circRNA_Atp8a1 Promotes Glycolytic Reprogramming in Damage of Intestinal Mucosal Barrier by Upregulating IGF2 through miR-200b-3p.

Tissue Eng Regen Med

Department of Gastroenterology, National Institution of Drug Clinical Trial, Guizhou Provincial People's Hospital, No.83, Zhongshan East Road, Nanming District, Guiyang City, 550002, Guizhou Province, China.

Published: July 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: This study investigated a circRNA (Circ_Atp8a1) in regulating intestinal epithelial repair in intestinal mucosal barrier damage.

Methods: A mouse model of intestinal mucosal barrier damage caused by burn injury was constructed. Skin and intestinal histopathologic changes in injured and control mice were compared. Glycolytic enzyme protein expression, lactate production, and glucose consumption in intestinal tissues were detected. Microarray analysis was used to screen differentially expressed circRNAs in mucosal tissues, and RT-qPCR, Sanger sequencing, RNAse R test, nucleoplasmic isolation experiments, and fluorescence in situ hybridization (FISH) were used to characterize the circular structure and localization of Circ_Atp8a1. In Caco-2 cells, adenoviral overexpression vector and small interfering RNA (siRNA) were constructed to regulate Circ_Atp8a1 expression. Cell proliferation and migration were detected by combining with the experiments of CCK-8, EdU, wound healing, and Transwell. The interaction between Circ_Atp8a1 and miR-200b-3p was investigated by dual luciferase reporter assay, RNA pull-down assay, and FISH assay. The target gene of miR-200b-3p was predicted and validated. Finally, the effects of intraperitoneal injection of KD-Circ_Atp8a1 and OE-Circ_Atp8a1 on intestinal mucosal damage in burned mice were observed by in vivo experiments.

Results: Mice with burn-induced intestinal mucosal damage had higher CMDI scores, increased expression of glycolytic enzymes in intestinal tissues, and altered glycolytic processes. A total of 308 aberrantly expressed circRNAs were screened, among which Circ_Atp8a1 was significantly down-regulated and mainly distributed in cytoplasm and jejunal crypts. In Caco-2 cells, overexpression of Circ_Atp8a1 inhibited cell proliferation, migration, and glycolysis, and knockdown of Circ_Atp8a1 did the opposite. Circ_Atp8a1 acted as a sponge for miR-200b-3p, which targeted and inhibited IGF2, which affected glycolysis-related metrics. Circ_Atp8a1 regulated IGF2 indirectly through miR-200b-3p, which in turn regulated intestinal mucosal damage. in vivo experiments showed that overexpression of Circ_Atp8a1 could inhibit miR-200b-3p expression, promote IGF2 expression, reduce intestinal mucosal damage and decrease mucosal permeability.

Conclusion: Circ_Atp8a1 plays a key regulatory role in the process of intestinal mucosal damage and affects the process of glycolysis through adsorption of miR-200b-3p to regulate IGF2. It is expected to be a new target for the treatment of intestinal mucosal damage.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s13770-025-00737-6DOI Listing

Publication Analysis

Top Keywords

intestinal mucosal
36
mucosal damage
24
intestinal
13
mucosal barrier
12
mucosal
11
circ_atp8a1
11
damage
8
intestinal tissues
8
expressed circrnas
8
caco-2 cells
8

Similar Publications

Introduction: A no-biopsy approach has been suggested for diagnosing coeliac disease (CD) in adult patients. This approach is already well established in diagnosing children with CD. This study aimed to evaluate the accuracy of IgA anti-tissue transglutaminase (IgA anti-tTG) in predicting duodenal mucosal lesions diagnostic of CD in adult patients.

View Article and Find Full Text PDF

Ulcerative colitis (UC) is a chronic inflammatory bowel disease, the incidence of which continues to rise globally, and existing therapeutic options are limited by low drug bioavailability and systemic side effects. In this study, we systematically investigated the challenges of the special gastrointestinal environment of UC patients for oral drug delivery, such as extreme pH, degradation by digestive enzymes, metabolism of intestinal flora and obstruction of the intestinal mucosal barrier, and summarized the potential of plant-derived Exosome-like Nanovesicles (PELNs) as a novel delivery system. PELNs are produced by plant cells and mainly consist of proteins, RNA, lipids and plant active molecules.

View Article and Find Full Text PDF

The gut microbiota of piglets is crucial for intestinal health and immune function, yet highly susceptible to various factors. Multiple factors such as Genetic and Sow Factors, feeding environment, diet and pathogen combine to shape the gut microbiota of piglets. PEDV, a highly pathogenic and transmissible virus, disrupts the gut microbiota by damaging the intestinal epithelial barrier, leading to microbial imbalance, weakened gut immunity, and severe diarrhea.

View Article and Find Full Text PDF

Background: Alzheimer's disease (AD) patients and animal models exhibit an altered gut microbiome that is associated with pathological changes in the brain. Intestinal miRNA enters bacteria and regulates bacterial metabolism and proliferation. This study aimed to investigate whether the manipulation of miRNA could alter the gut microbiome and AD pathologies.

View Article and Find Full Text PDF