A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Evaluation of the False Discovery Rate in Library-Free Search by DIA-NN Using Human Proteome. | LitMetric

Evaluation of the False Discovery Rate in Library-Free Search by DIA-NN Using Human Proteome.

J Proteome Res

Department of Pharmaceutical Microbiology, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan.

Published: August 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Recently, deep-learning-based spectral libraries have gained increasing attention. Several data-independent acquisition (DIA) software tools have integrated this feature, known as a library-free search, thereby making DIA analysis more accessible. However, controlling the false discovery rate (FDR) is challenging owing to the vast amount of peptide information in libraries. In this study, we introduced a stringent method to evaluate FDR control using DIA software. Recombinant proteins were synthesized from full-length human cDNA libraries and analyzed by using liquid chromatography-mass spectrometry and DIA software. The results were compared with known protein sequences to calculate the FDR. Notably, we compared the identification performance of DIA-NN versions 1.8.1, 1.9.2, and 2.1.0. Versions 1.9.2 and 2.10 identified more peptides than version 1.8.1, and versions 1.9.2 and 2.1.0 used a more conservative identification approach, thus significantly improving the FDR control. Across the synthesized recombinant protein mixtures, the average FDR at the precursor level was 0.538% for version 1.8.1, 0.389% for version 1.9.2, and 0.385% for version 2.1.0; at the protein level, the FDRs were 2.85%, 1.81%, and 1.81%, respectively. Collectively, our data set provides valuable insights for comparing FDR controls across DIA software and aiding bioinformaticians in enhancing their tools.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jproteome.5c00036DOI Listing

Publication Analysis

Top Keywords

dia software
16
192 210
12
false discovery
8
discovery rate
8
library-free search
8
fdr control
8
versions 192
8
version 181
8
fdr
6
dia
5

Similar Publications