Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Fungal endophyte communities are mainly driven by host plant identity and geographic location. However, little is known about interactions between endophytes and characteristics of the host plant such as leaf functional traits, which vary both among and within host species. Previous studies focused on a limited number of host plant species and did not control for varying conditions in the host's neighborhood, which affect leaf functional traits and, in turn, might affect fungal endophyte communities. Using a tree diversity experiment in which all trees grow under standardized conditions, we were able to assess the contributions of host tree identity, host neighborhood species richness, and host community composition as well as the variation of leaf traits caused by these factors on taxonomic richness and community composition of foliar fungal endophytes. We used next-generation amplicon sequencing to analyze the fungal endophyte community and visible-near infrared spectrometry data to predict the mean values and the intra-individual variation of leaf traits in individual trees. We found both mean trait values and intra-individual trait variation to have significant effects on endophyte richness. Mean trait values of leaf dry matter content, leaf carbon, leaf nitrogen, and leaf carbon-to-nitrogen ratio exhibited negative effects on endophyte richness, whereas specific leaf area and leaf phosphorus content increased endophyte richness. Additionally, intra-individual leaf-trait variation generally had positive effects on richness. Overall endophyte community composition was influenced by mean leaf dry matter content and specific leaf area. Ascomycota were influenced by the specific leaf area, whereas Basidiomycota responded to leaf dry matter content. We demonstrate that functional leaf traits affect foliar endophyte communities, with positive diversity effects of host leaf nutrients that are essential, and likely limiting, for fungal endophytes. Although our study emphasizes the role of leaf traits in shaping fungal communities, we also acknowledge that these dynamic interactions could lead to traits being influenced by microbes through microbe-plant interactions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12268234PMC
http://dx.doi.org/10.1002/ece3.71691DOI Listing

Publication Analysis

Top Keywords

leaf
18
leaf traits
16
fungal endophyte
12
endophyte communities
12
host plant
12
community composition
12
endophyte richness
12
leaf dry
12
dry matter
12
matter content
12

Similar Publications

Rising atmospheric CO exposes plants to high-CO environments, while excessive nitrogen fertilizer use degrades soil, highlighting the need to reduce nitrogen input and cultivate vigorous cucumber seedlings under HC-LN conditions. Calcineurin B-like proteins (CBLs) sense calcium signals and regulate carbon/nitrogen metabolism via CBL-interacting protein kinases (CIPKs), though their roles in cucumber under HC-LN conditions are unclear. Here, we identified seven and 19 genes.

View Article and Find Full Text PDF

Marthamycetales species are widely distributed, non-lichenized, apothecial ascomycetes that are associated with various woody plants and grasses. Most species are presumed to be saprobes, although a few are pathogens. Apothecia are small and erumpent, with farinose discs that are encircled by ragged, projecting flaps of degraded plant tissue.

View Article and Find Full Text PDF

The study of plant biology has traditionally focused on investigations conducted at the tissue, organ, or whole plant level. However, single-cell transcriptomics has recently emerged as an important tool for plant biology, enabling researchers to uncover the expression profiles of individual cell types within a tissue. The application of this tool has revealed new insights into cell-to-cell gene expression heterogeneity and has opened new avenues for research in plant biology.

View Article and Find Full Text PDF

Specialized plant metabolism, particularly phenolic compound production, contributes significantly to the functioning and resilience of mountain ecosystems. Livestock grazing can influence phenolic production, with its effects varying depending on microclimatic factors and soil conditions. Despite the ecological significance of this process, the impact of livestock grazing on phenolic production in alpine plants remains insufficiently explored.

View Article and Find Full Text PDF

Hydraulic constraints to stomatal conductance in flooded trees.

Oecologia

September 2025

School of Renewable Natural Resources, Louisiana State University Agricultural Center, Baton Rouge, LA, 70803, USA.

Stomatal closure is a pervasive response among trees exposed to flooded soil. We tested whether this response is caused by reduced hydraulic conductance in the soil-to-leaf hydraulic continuum (k), and particularly by reduced root hydraulic conductance (k), which has been widely hypothesized. We tracked stomatal conductance at the leaf level (g) and canopy scale (G) along with physiological conditions in two temperate tree species, Magnolia grandiflora and Quercus virginiana, that were subjected to flood and control conditions in a greenhouse experiment.

View Article and Find Full Text PDF