Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
The metagenome analysis of complex environments with thousands of datasets, such as those in the Sequence Read Archive, requires substantial computational resources for it to be completed within a reasonable time frame. Efficient use of infrastructure is essential, and analyses must be fully reproducible with publicly available workflows to ensure transparency. Here, we introduce the Metagenomics-Toolkit, a scalable, data-agnostic workflow that automates the analysis of short and long metagenomic reads from Illumina and Oxford Nanopore Technology devices, respectively. The Metagenomics-Toolkit provides standard features such as quality control, assembly, binning, and annotation, along with unique capabilities including plasmid identification, recovery of unassembled microbial community members, and discovery of microbial interdependencies through dereplication, co-occurrence, and genome-scale metabolic modeling. Additionally, the Metagenomics-Toolkit includes a machine learning-optimized assembly step that adjusts peak RAM usage to match actual requirements, reducing the need for high-memory hardware. It can be executed on user workstations and includes optimizations for efficient cloud-based cluster execution. We compare the Metagenomics-Toolkit with five widely used metagenomics workflows and demonstrate its capabilities on 757 sewage metagenome datasets to investigate a possible sewage core microbiome. The Metagenomics-Toolkit is open source and available at https://github.com/metagenomics/metagenomics-tk.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12267984 | PMC |
http://dx.doi.org/10.1093/nargab/lqaf093 | DOI Listing |