98%
921
2 minutes
20
Lung cancer remains one of the most prevalent and lethal malignancies, with poor drug response and high mortality rates. Proteolysis-targeting chimeras (PROTACs) are emerging as a novel therapeutic strategy, leveraging E3 ligases to degrade oncogenic proteins selectively via the ubiquitin-proteasome pathway. These degraders offer higher selectivity and bioavailability compared to traditional inhibitors. This review explores how PROTACs eliminate oncogenic proteins in lung cancer and examines the role of E3 ligases in this process. Commonly utilized ligases include Cereblon (CRBN) and Von Hippel-Lindau (VHL), while newer ones, such as MDM2 and Kelch-like ECH-associated protein 1 (KEAP1), are being investigated for therapeutic potential. We discuss key factors in PROTAC design, including ligand selection, linker optimization, and pharmacokinetic properties, which influence tumor specificity and efficacy while minimizing off- target effects. Additionally, we highlight targetable oncogenic drivers in lung cancer, such as KRAS, EGFR, and ALK fusion proteins, and evaluate preclinical and clinical studies that demonstrate PROTACs' potential for overcoming drug resistance. The challenges associated with clinical translation, tumor microenvironment interactions, and E3 ligase selection are also discussed. Finally, we present future perspectives, including expanding the range of E3 ligases, developing multitargeting strategies, and integrating next-generation molecular glue degraders. By offering a comparative analysis of E3 ligase- specific PROTACs, this review underscores the potential of PROTAC technology to advance precision oncology in lung cancer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/0109298673382742250619055201 | DOI Listing |
JAMA Netw Open
September 2025
Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea.
Importance: Patients with advanced cancer frequently receive broad-spectrum antibiotics, but changing use patterns across the end-of-life trajectory remain poorly understood.
Objective: To describe the patterns of broad-spectrum antibiotic use across defined end-of-life intervals in patients with advanced cancer.
Design, Setting, And Participants: This nationwide, population-based, retrospective cohort study used data from the South Korean National Health Insurance Service database to examine broad-spectrum antibiotic use among patients with advanced cancer who died between July 1, 2002, and December 31, 2021.
Minerva Surg
September 2025
Unit of Geriatric Medicine, Department of Emergency, Foresea Life Insurance Guangzhou General Hospital, Guangzhou, China -
J Neurooncol
September 2025
Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA.
Purpose: Frailty measures are critical for predicting outcomes in metastatic spine disease (MSD) patients. This study aimed to evaluate frailty measures throughout the disease process.
Methods: This retrospective analysis measured frailty in MSD patients at multiple time points using a modified Metastatic Spinal Tumor Frailty Index (MSTFI).
J Robot Surg
September 2025
Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, UT Health San Antonio, 7703 Floyd Curl Drive, 7836, San Antonio, TX, 78229-3900, USA.
To evaluate intraoperative ventilatory mechanics during robotic-assisted hysterectomy in obese women with endometrial cancer and introduce the concept of a physiologic "ceiling effect" in respiratory strain. We conducted a retrospective cohort study of 89 women with biopsy-confirmed endometrial cancer who underwent robotic-assisted total hysterectomy between 2011 and 2015. Intraoperative ventilatory parameters, including plateau airway pressure and static lung compliance, were recorded at five-minute intervals.
View Article and Find Full Text PDFJ Cancer Res Clin Oncol
September 2025
Institute for Community Medicine, Section Epidemiology of Health Care and Community Health, University Medicine Greifswald, Greifswald, Germany.
Purpose: The German sector-based healthcare system poses a major challenge to continuous patient monitoring and long-term follow-up, both essential for generating high-quality, longitudinal real-world data. The national Network for Genomic Medicine (nNGM) bridges the inpatient and outpatient care sectors to provide comprehensive molecular diagnostics and personalized treatment for non-small cell lung cancer (NSCLC) patients in Germany. Building on the established nNGM infrastructure, the DigiNet study aims to evaluate the impact of digitally integrated, personalized care on overall survival (OS) and the optimization of treatment pathways, compared to routine care.
View Article and Find Full Text PDF