Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The vast majority of protein structures are determined at cryogenic temperatures, which are far from physiological conditions. Nevertheless, it is well established that temperature is an essential thermodynamic parameter for understanding the conformational dynamics and functionality of proteins in their native environments. Time-resolved crystallography is a technique that aims to elucidate protein function by examining structural alterations during processes such as ligand binding, catalysis, or allostery. However, this approach is typically conducted under ambient conditions, which may obscure crucial conformational states, that are only visible at physiological temperatures. In this study, we directly address the interplay between protein structure and activity via a method that enables multi-temperature, time-resolved serial crystallography experiments in a temperature window from below 10 °C to above 70 °C. Via this 5D-SSX, time-resolved experiments can now be carried out at physiological temperatures and with long time delays, providing insights into protein function and enzyme catalysis. Our findings demonstrate the temperature-dependent modulation of turnover kinetics for the mesophilic β-lactamase CTX-M-14 and the thermophilic enzyme xylose isomerase, within the full protein structure.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12267849PMC
http://dx.doi.org/10.1038/s41467-025-61631-2DOI Listing

Publication Analysis

Top Keywords

multi-temperature time-resolved
8
time-resolved serial
8
serial crystallography
8
protein function
8
physiological temperatures
8
protein structure
8
protein
5
probing modulation
4
modulation enzyme
4
enzyme kinetics
4

Similar Publications

The vast majority of protein structures are determined at cryogenic temperatures, which are far from physiological conditions. Nevertheless, it is well established that temperature is an essential thermodynamic parameter for understanding the conformational dynamics and functionality of proteins in their native environments. Time-resolved crystallography is a technique that aims to elucidate protein function by examining structural alterations during processes such as ligand binding, catalysis, or allostery.

View Article and Find Full Text PDF

The structural evolution of spin crossover (SCO) complexes during their spin transition at equilibrium and out-of-equilibrium conditions needs to be understood to enable their successful utilisation in displays, actuators and memory components. In this study, diffraction techniques were employed to study the structural changes accompanying the temperature increase and the light irradiation of a defect [2 × 2] triiron(II) metallogrid of the form [FeII3L(HL)](BF)·4MeCN (FE3), L = 3,5-bis{6-(2,2'-bipyridyl)}pyrazole. Although a multi-temperature crystallographic investigation on single crystals evidenced that the compound does not exhibit a thermal spin transition, the structural analysis of the defect grid suggests that the flexibility of the grid, provided by a metal-devoid vertex, leads to interesting characteristics that can be used for intermolecular cooperativity in related thermally responsive systems.

View Article and Find Full Text PDF

For roughly two decades, cryocrystallography has been the overwhelmingly dominant method for determining high-resolution biomolecular structures. Competition from single-particle cryo-electron microscopy and micro-electron diffraction, increased interest in functionally relevant information that may be missing or corrupted in structures determined at cryogenic temperature, and interest in time-resolved studies of the biomolecular response to chemical and optical stimuli have driven renewed interest in data collection at room temperature and, more generally, at temperatures from the protein-solvent glass transition near 200 K to ∼350 K. Fischer has recently reviewed practical methods for room-temperature data collection and analysis [Fischer (2021), Q.

View Article and Find Full Text PDF