A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Systemic administration of an RNA binding and cell-penetrating antibody targets therapeutic RNA to multiple mouse models of cancer. | LitMetric

Article Synopsis

  • There is a growing interest in using RNAs as targeted cancer therapies to trigger immune responses, but effective delivery to tumor cells remains a challenge.
  • Researchers discovered a monoclonal antibody called TMAB3 that can effectively bind and deliver therapeutic RNAs directly to tumors, creating stable complexes for treatment.
  • In mouse models, these TMAB3/RNA complexes significantly improved survival rates and immune responses against cancer, suggesting potential for advancing RNA-based cancer therapies.

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

There is intense interest in the advancement of RNAs as rationally designed therapeutic agents, especially in oncology, where a major focus is to use RNAs to stimulate pattern recognition receptors to leverage innate immune responses. However, the inability to selectively deliver therapeutic RNAs within target cells after intravenous administration now hinders the development of this type of treatment for cancer and other disorders. Here, we found that a tumor-targeting, cell-penetrating, and RNA binding monoclonal antibody, TMAB3, can form stable, noncovalent antibody/RNA complexes of a discrete size that mediate highly specific and functional delivery of RNAs into tumors. Using 3p-hpRNA, an agonist of the pattern recognition receptor retinoic acid-inducible gene-I (RIG-I), we observed robust antitumor efficacy of systemically administered TMAB3/3p-hpRNA complexes in mouse models of pancreatic cancer, medulloblastoma, and melanoma. In the KPC syngeneic, orthotopic pancreatic cancer model in immunocompetent mice, treatment with TMAB3/3p-hpRNA tripled animal survival, decreased tumor growth, and specifically targeted malignant cells, with a 1500-fold difference in RNA delivery into tumor cells versus nonmalignant cells within the tumor mass. Single-cell RNA sequencing (scRNA-seq) and flow cytometry demonstrated that TMAB3/3p-hpRNA treatment elicited a potent antitumoral immune response characterized by RIG-I activation and increased infiltration and activity of cytotoxic T cells. These studies established that TMAB3/RNA complexes can deliver RNA payloads specifically to hard-to-treat tumor cells to achieve antitumor efficacy, providing an antibody-based platform to advance the study of RNA therapies for the treatment of patients with cancer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12375925PMC
http://dx.doi.org/10.1126/scitranslmed.adk1868DOI Listing

Publication Analysis

Top Keywords

rna binding
8
mouse models
8
pattern recognition
8
antitumor efficacy
8
pancreatic cancer
8
tumor cells
8
rna
7
cells
6
cancer
5
systemic administration
4

Similar Publications