A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Precision Prediction of Microbial Ecosystem Impact on Host Metabolism Using Genome-Resolved Metagenomics. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Microbes drive ecosystem function through their physical interactions and metabolic transformations. However, since microbiomes are ecologically and metabolically interconnected, it is challenging to predict emergent ecosystem responses once the microbiome is disturbed. While it is widely acknowledged that mammalian gut dysbiosis influences host metabolism, mechanistic links that predict these effects are understudied. This study employs a genome-resolved eco-systems biology approach, using a high-resolution 'spinal cord-gut axis' model system and dataset, to predict how dysbiotic gut metabolism impacts overall mammalian health. By scaling and combining temporally resolved network analytics and consensus statistical methods, key microbial species were identified that predict overall host physiology and presumably control the gut ecosystem. validation by pathway-centric functional analyses and comparative genomics revealed that key bacteria, sometimes exclusively, encode functions linking microbial and host metabolisms. Notably, spinal-mediated disturbances in the ecosystem shifted gut microbial nitrogen metabolism from urease-to amino acid-dependent pathways, with patterns that varied by host sex and bacterial species. Overall, this research challenges the traditional paradigm that only the host maintains whole-body nitrogen balance and instead invokes the microbiome as an environmentally-sensitive regulatory organ that can dictate health or disease by influencing mammalian whole-body elemental balance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12262403PMC
http://dx.doi.org/10.1101/2025.06.27.661827DOI Listing

Publication Analysis

Top Keywords

host metabolism
8
host
6
ecosystem
5
precision prediction
4
microbial
4
prediction microbial
4
microbial ecosystem
4
ecosystem impact
4
impact host
4
metabolism
4

Similar Publications