A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Tuning Physicochemical Properties of Boron Nitride-Based Membranes via Scalable One-Step Exfoliation for Ionic and Molecular Nanofiltration. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Two-dimensional (2D) nanomaterials, such as graphene, have been widely used in various applications, such as electrodes for energy storage and laminar membranes for separations. Hexagonal boron nitride (hBN), one of the 2D materials possessing properties similar to graphene, can be used as laminar stacking laminates for separation processes due to its high filtration efficiency and solvent flow. Herein, we prepared 2D-hBN nanosheets using different nitrogen-containing precursors via facile liquid-phase exfoliation for the preparation of hBN membranes. We found that the as-prepared hBN samples exhibit unique physicochemical properties, as determined by various spectroscopic techniques, particularly near-edge X-ray absorption fine structure spectroscopy, which was used to identify the presence of defects on the hBN nanosheets. The elemental compositions of each hBN nanosheet were also revealed by an X-ray photoelectron spectroscopic technique, indicating significant changes in the B:N and B:C ratios. The hBN membranes exhibit high stability in aqueous solutions without membrane deformation. The nanochannel height of the hBN membranes was found to be 0.34 nm, as determined by X-ray diffraction analysis. The membranes demonstrate excellent rejection performance for charged dye molecules (acid orange 7 and methylene blue) with high water permeation rates. This is due to electrostatic repulsion between the negatively charged surface of the hBN membranes and the charged species, as well as size exclusion from the narrow capillary channels between the stacked layered hBN nanosheets. Therefore, the hBN membranes, with their unique physicochemical properties, are promising for applications in water purification.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12257375PMC
http://dx.doi.org/10.1021/acsmaterialsau.5c00026DOI Listing

Publication Analysis

Top Keywords

hbn membranes
20
physicochemical properties
12
hbn
10
membranes
8
unique physicochemical
8
hbn nanosheets
8
tuning physicochemical
4
properties
4
properties boron
4
boron nitride-based
4

Similar Publications