98%
921
2 minutes
20
Salt bridges are ionic interactions that are of great importance in protein recognition. However, their structural description using X-ray crystallography or NMR may be inconclusive. Classical molecular dynamics (MD) used for the interpretation neglects electronic polarization, which results in artifactual overbinding. Here, we resolve the problem via charge scaling, which accounts for electronic polarization in a mean-field way. We study three salt bridges in insulin analogue. New NMR ensembles are generated via NOE-restrained MD using ff19SB and CHARMM36m force fields and the scaled-charge prosECCo75. Tens of μs of unrestrained MD show in a statistically converged manner that ff19SB induces a non-native salt bridge. This behavior is quantified via umbrella sampling of salt bridge dissociation, which indicates a rather high strength of up to 4 and 5 kcal mol for CHARMM36m and ff19SB, respectively. In contrast, prosECCo75 gives a biologically reasonable dissociation barrier of 1 kcal mol. Our results indicate that a physically justified description of charge-charge interactions within a nonpolarizable MD framework reliably describes aqueous biomolecular systems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12302216 | PMC |
http://dx.doi.org/10.1021/acs.jpclett.5c01786 | DOI Listing |
Chem Sci
August 2025
Graduate School of Pharmaceutical Sciences, The University of Tokyo 7-3-1 Hongo Bunkyo Tokyo 113-0033 Japan.
Residence time, which refers to the average duration a drug remains bound to its receptor, is a crucial parameter in determining its pharmacological effects. However, the mechanisms governing the residence time of G protein-coupled receptor (GPCR) ligands remain unclear. In this study, we observed NMR signals from the methyl groups of alanine and methionine located at the intersection of the binding cavity and extracellular loops of AAR under conditions where E165Q and T256A mutations led to reduced residence times.
View Article and Find Full Text PDFFood Funct
September 2025
Science and Technology Innovation Center, Hunan University of Chinese Medicine, Hunan, China.
Neomangiferin (NG) is an active ingredient extracted from mango, recognized for its antioxidant potential. However, its anti-aging efficacy remains largely unexplored. This study employed () to evaluate the anti-aging activity of NG and investigate the corresponding molecular mechanism.
View Article and Find Full Text PDFBioresour Technol
September 2025
Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China. Electronic address:
Microbial desalination cells (MDCs) have traditionally employed simplified NaCl solutions as feedwater for synchronous desalination and bioenergy recovery. Nevertheless, the specific mechanisms by which MDCs remove complex multi-ions from saline wastewater remain obscure. This study thoroughly investigated ion migration, bioelectrochemical dynamics, and microbial ecological responses across three distinct configurations: monovalent ions - PMDC, divalent cations - CMDC and anions - AMDC.
View Article and Find Full Text PDFJ Phys Chem B
September 2025
School of Science, RMIT University, Melbourne 3000, Australia.
Pentameric ligand-gated ion channels control synaptic neurotransmission via an allosteric mechanism, whereby agonist binding induces global protein conformational changes that open an ion-conducting pore. For the proton-activated bacterial () ligand-gated ion channel (GLIC), high-resolution structures are available in multiple conformational states. We used a library of atomistic molecular dynamics (MD) simulations to study conformational changes and to perform dynamic network analysis to elucidate the communication pathways underlying the gating process.
View Article and Find Full Text PDFJ Chem Phys
September 2025
Department of Chemistry Education and Graduate Department of Chemical Materials, Pusan National University, Busan 46241, Republic of Korea.
Alkali salt-doped ionic liquids are emerging as promising electrolyte systems for energy applications, owing to their excellent interfacial stability. To address their limited ionic conductivity, various strategies have been proposed, including modifying the ion solvation environment and enhancing the transport of selected ions (e.g.
View Article and Find Full Text PDF