Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Targeted protein degradation by proteolysis-targeting chimeras (PROTAC) is dependent on formation and plasticity of ternary complexes enabling ubiquitination. In this study, we employed long-timescale molecular dynamics (MD) simulations, free energy landscape analysis, and quantum mechanical (QM) calculations to investigate the molecular determinants of PROTAC efficacy. Using three model systems (FAK-VHL, BTK-CRBN, and TTK-CRBN), each with three PROTACs of varying potencies, we analyzed a total of nine ternary complexes over 500 ns MD simulations each. Simulation events analysis revealed that potent PROTACs maintain stable and important interactions between the protein of interest (POI) and the E3 ligase, while weaker PROTACs exhibit diminished or no interactions. Conformational dynamics and changes in the interaction patterns between the POI-E3-ligase complexes highlighted the importance of ternary complex plasticity in degradation efficiency. These findings were also supported by the distribution of free energy landscape during simulations. Distributions of the free energy landscape offer insights into the stability of population states and open new avenues for understanding their degradation potential. Additionally, to overcome the limitation of conventional docking models, we highlight the importance of QM and DFT based methods to predict the impact of binding at the E3-ligase site which corelates with the degradation potentials of PROTACs. These insights provide a new computational framework for rational PROTAC design.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10822-025-00630-3DOI Listing

Publication Analysis

Top Keywords

free energy
16
energy landscape
12
molecular dynamics
8
ternary complexes
8
degradation
5
mechanistic insights
4
insights protac-mediated
4
protac-mediated degradation
4
degradation integrated
4
integrated framework
4

Similar Publications

To address the increasingly limited water availability, using metal-organic frameworks (MOFs) to capture atmospheric water vapor as usable resources has emerged as a promising strategy. The adsorption characteristics of MOFs as well as their step pressure (i.e.

View Article and Find Full Text PDF

A series of Cu-based single-atom catalysts (SACs) with asymmetric coordination were designed to accelerate lithium-sulfur (Li-S) chemistry. The electronegativity contrast from the dopant induces a localized electronic asymmetry that amplifies Jahn-Teller distortion at the Cu center. This distortion profoundly modulates the Cu 3d electronic structure and its interaction with Li-S intermediates.

View Article and Find Full Text PDF

Cyclin-dependent kinase 20 (CDK20), also known as cell cycle-related kinase (CCRK), plays a pivotal role in hepatocellular carcinoma (HCC) progression by regulating β-catenin signaling and promoting uncontrolled proliferation. Despite its emerging significance, selective small-molecule inhibitors of CDK20 remain unexplored. In this study, a known CDK20 inhibitor, ISM042-2-048, was employed as a reference to retrieve structurally similar compounds from the PubChem database using an 85% similarity threshold.

View Article and Find Full Text PDF

Design and synthesis of novel indolinone Aurora B kinase inhibitors based on fragment-based drug discovery (FBDD).

Mol Divers

September 2025

State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, Xinjiang, China.

Aurora kinases are a group of serine/threonine kinases essential for cell mitosis, comprising Aurora A, B, and C. However, the Aurora B is overexpressed in multiple tumors and the aurone has been proved to exhibit potent inhibitory activity against Aurora B kinase by our group. The indolinone was considered as an aurone scaffold hopping analog, and the indolinone-based Aurora B inhibitor library (3577 molecules) was constructed by FBDD strategy.

View Article and Find Full Text PDF

To overcome the potential issue of active site blockage by surfactants in colloidal synthesis, alternative synthetic approaches must be explored. In this study, we investigated both solvent-free and colloidal thermolysis routes to synthesize nickel sulfides (NiS and NiS) using sulfur-based Ni complexes, [Ni(SCO(CH))] (Ni-Xan) and [Ni(SCN(CH))] (Ni-DTC) as precursors. The solvent-free decomposition of these complexes produced ligand-free NiS and NiS in the absence or presence of triphenylphosphine (TPP), respectively.

View Article and Find Full Text PDF