98%
921
2 minutes
20
Targeted protein degradation by proteolysis-targeting chimeras (PROTAC) is dependent on formation and plasticity of ternary complexes enabling ubiquitination. In this study, we employed long-timescale molecular dynamics (MD) simulations, free energy landscape analysis, and quantum mechanical (QM) calculations to investigate the molecular determinants of PROTAC efficacy. Using three model systems (FAK-VHL, BTK-CRBN, and TTK-CRBN), each with three PROTACs of varying potencies, we analyzed a total of nine ternary complexes over 500 ns MD simulations each. Simulation events analysis revealed that potent PROTACs maintain stable and important interactions between the protein of interest (POI) and the E3 ligase, while weaker PROTACs exhibit diminished or no interactions. Conformational dynamics and changes in the interaction patterns between the POI-E3-ligase complexes highlighted the importance of ternary complex plasticity in degradation efficiency. These findings were also supported by the distribution of free energy landscape during simulations. Distributions of the free energy landscape offer insights into the stability of population states and open new avenues for understanding their degradation potential. Additionally, to overcome the limitation of conventional docking models, we highlight the importance of QM and DFT based methods to predict the impact of binding at the E3-ligase site which corelates with the degradation potentials of PROTACs. These insights provide a new computational framework for rational PROTAC design.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10822-025-00630-3 | DOI Listing |
J Am Chem Soc
September 2025
Department of Chemical Engineering, National Taiwan University, Taipei 106319, Taiwan.
To address the increasingly limited water availability, using metal-organic frameworks (MOFs) to capture atmospheric water vapor as usable resources has emerged as a promising strategy. The adsorption characteristics of MOFs as well as their step pressure (i.e.
View Article and Find Full Text PDFJ Phys Chem A
September 2025
Department of Chemistry, Tsinghua University, Beijing 100084, China.
A series of Cu-based single-atom catalysts (SACs) with asymmetric coordination were designed to accelerate lithium-sulfur (Li-S) chemistry. The electronegativity contrast from the dopant induces a localized electronic asymmetry that amplifies Jahn-Teller distortion at the Cu center. This distortion profoundly modulates the Cu 3d electronic structure and its interaction with Li-S intermediates.
View Article and Find Full Text PDFMol Divers
September 2025
Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, 11942, Al Kharj, Saudi Arabia.
Cyclin-dependent kinase 20 (CDK20), also known as cell cycle-related kinase (CCRK), plays a pivotal role in hepatocellular carcinoma (HCC) progression by regulating β-catenin signaling and promoting uncontrolled proliferation. Despite its emerging significance, selective small-molecule inhibitors of CDK20 remain unexplored. In this study, a known CDK20 inhibitor, ISM042-2-048, was employed as a reference to retrieve structurally similar compounds from the PubChem database using an 85% similarity threshold.
View Article and Find Full Text PDFMol Divers
September 2025
State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, Xinjiang, China.
Aurora kinases are a group of serine/threonine kinases essential for cell mitosis, comprising Aurora A, B, and C. However, the Aurora B is overexpressed in multiple tumors and the aurone has been proved to exhibit potent inhibitory activity against Aurora B kinase by our group. The indolinone was considered as an aurone scaffold hopping analog, and the indolinone-based Aurora B inhibitor library (3577 molecules) was constructed by FBDD strategy.
View Article and Find Full Text PDFDalton Trans
September 2025
Department of Chemistry, University of Zululand, Private Bag X1001, KwaDlangezwa 3880, South Africa.
To overcome the potential issue of active site blockage by surfactants in colloidal synthesis, alternative synthetic approaches must be explored. In this study, we investigated both solvent-free and colloidal thermolysis routes to synthesize nickel sulfides (NiS and NiS) using sulfur-based Ni complexes, [Ni(SCO(CH))] (Ni-Xan) and [Ni(SCN(CH))] (Ni-DTC) as precursors. The solvent-free decomposition of these complexes produced ligand-free NiS and NiS in the absence or presence of triphenylphosphine (TPP), respectively.
View Article and Find Full Text PDF