A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Deep Learning-Accelerated Prostate MRI: Improving Speed, Accuracy, and Sustainability. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Rationale And Objectives: This study aims to evaluate the effectiveness of a deep learning (DL)-enhanced four-fold parallel acquisition technique (P4) in improving prostate MR image quality while optimizing scan efficiency compared to the traditional two-fold parallel acquisition technique (P2).

Materials And Methods: Patients undergoing prostate MRI with DL-enhanced acquisitions were analyzed from January 2024 to July 2024. The participants prospectively received T2-weighted sequences in all imaging planes using both P2 and P4. Three independent readers assessed image quality, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR). Significant differences in contrast and gray-level properties between P2 and P4 were identified through radiomics analysis (p <.05).

Results: A total of 51 participants (mean age 69.4 years ± 10.5 years) underwent P2 and P4 imaging. P4 demonstrated higher CNR and SNR values compared to P2 (p <.001). P4 was consistently rated superior to P2, demonstrating enhanced image quality and greater diagnostic precision across all evaluated categories (p <.001). Furthermore, radiomics analysis confirmed that P4 significantly altered structural and textural differentiation in comparison to P2. The P4 protocol reduced T2w scan times by 50.8%, from 11:48 min to 5:48 min (p <.001).

Conclusion: In conclusion, P4 imaging enhances diagnostic quality and reduces scan times, improving workflow efficiency, and potentially contributing to a more patient-centered and sustainable radiology practice.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.acra.2025.06.022DOI Listing

Publication Analysis

Top Keywords

prostate mri
8
parallel acquisition
8
acquisition technique
8
image quality
8
deep learning-accelerated
4
learning-accelerated prostate
4
mri improving
4
improving speed
4
speed accuracy
4
accuracy sustainability
4

Similar Publications