A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Density-functional Green function theory: dynamical exchange-correlation field in lieu of self-energy. | LitMetric

Density-functional Green function theory: dynamical exchange-correlation field in lieu of self-energy.

J Phys Condens Matter

Department of Physics, Division of Mathematical Physics, Lund University, Professorsgatan 1, 223 63 Lund, Sweden.

Published: July 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The one-particle Green function of a many-electron system is traditionally formulated within the self-energy picture. A different formalism was recently proposed, in which the self-energy is replaced by a dynamical exchange-correlation field, which acts on the Green function locally in both space and time. It was found that there exists a fundamental quantity, referred to as the dynamical exchange-correlation hole, which can be interpreted as effective density fluctuations induced in a many-electron system when a hole or an electron is introduced into the system, as in photoemission and inverse photoemission experiments. The dynamical exchange-correlation potential is simply the Coulomb potential of this exchange-correlation hole, which fulfils a sum rule and an exact constraint, identical to those satisfied by the static exchange-correlation hole in density-functional theory. The proposed formalism has been applied to a number of model systems such as the half-filled one-dimensional Hubbard model, the one-dimensional antiferromagnetic Heisenberg model, and the single-impurity Anderson model. The dynamical exchange-correlation hole and field of the homogeneous electron gas have also been studied with the view of constructing a density-functional approximation such as the local-density approximation. The availability of simple but accurate approximations for the exchange-correlation potential would circumvent costly computations of the traditional self-energy. The formalism may also provide new perspectives and insights into the many-body problem.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-648X/adf023DOI Listing

Publication Analysis

Top Keywords

dynamical exchange-correlation
20
exchange-correlation hole
16
green function
12
exchange-correlation
8
exchange-correlation field
8
many-electron system
8
exchange-correlation potential
8
dynamical
5
hole
5
density-functional green
4

Similar Publications