98%
921
2 minutes
20
Lighting enhancement is a classical topic in low-level image processing. Existing studies mainly focus on global illumination optimization while overlooking local semantic objects, and this limits the performance of exposure compensation. In this paper, we introduce SRENet, a novel lighting enhancement network guided by saliency information. It adopts a two-step strategy of foreground-background separation optimization to achieve a balance between global and local illumination. In the first step, we extract salient regions and implement the local illumination enhancement that ensures the exposure quality of salient objects. Next, we utilize a fusion module to process global lighting optimization based on local enhanced results. With the two-step strategy, the proposed SRENet yield better lighting enhancement for local illumination while preserving the globally optimal results. Experimental results demonstrate that our method obtains more effective enhancement results for various tasks of exposure correction and lighting quality improvement. The source code and pre-trained models are available at https://github.com/PlanktonQAQ/SRENet.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TIP.2025.3587588 | DOI Listing |
Langmuir
September 2025
Microelectronics & Nanotechnology-Shamsuddin Research Centre (MiNT-SRC), Universiti Tun Hussein Onn Malaysia, Batu Pahat 86400 Johor, Malaysia.
Achieving a crack-free, high-surface-area photoanode is essential for maximizing the efficiency of dye-sensitized solar cells (DSSCs). In this work, rutile titanium dioxide (rTiO) nanoflowers were synthesized hydrothermally and then conformally coated with copper(I) oxide (CuO) by RF magnetron sputtering to seal pre-existing cracks and to create a nanothorn surface favorable for dye adsorption. Systematic control of the sputtering time identified 60 min as optimal condition, yielding a photoanode thickness of about 6.
View Article and Find Full Text PDFJ Cosmet Dermatol
September 2025
Department of Dermatology, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, China.
Purpose: To evaluate the efficacy and underlying mechanism of advanced optimal pulse technology intense pulsed light (AOPT) in low-energy triple-pulse long-width mode (AOPT-LTL) for melasma treatment.
Methods: An in vivo guinea pig model of melasma was established through progesterone injection and ultraviolet B radiation. Three sessions of AOPT-LTL treatment were performed weekly.
Chem Soc Rev
September 2025
Department of Chemistry and Biochemistry, UCSD-CNRS Joint Research Laboratory (IRL3555), University of California, San Diego, La Jolla, CA 92093-0358, USA.
N-Heterocyclic carbenes (NHCs) hold a unique significance in organometallic catalysis and are powerful organocatalysts for a variety of organic transformations involving crucial intermediates such as Breslow intermediates (BIs), deprotonated BIs (BI-s), ketyl radicals (KRs), and acyl azoliums (AAs). To address the remaining challenges facing reactions catalyzed by NHCs, non-classical stable carbenes, namely 1,2,3-triazolylidenes (MICs), cousins of NHCs, have shown great potential. MICs share similar features with typical NHCs but possess unique characteristics, such as enhanced σ-donor ability and absence of dimerization.
View Article and Find Full Text PDFLab Chip
September 2025
Department of Engineering Design, Indian Institute of Technology Madras, India.
Microfluidic devices offer more accurate fluid flow control and lower reagent use for uniform nanoparticle synthesis than batch synthesis. Here, we propose a microfluidic device that synthesizes uniform iron oxide nanoparticles (IONPs) for highly efficient intracellular delivery. The 3D-printed device was fabricated, comprising two inlets in the T-shaped channel with an inner diameter of 2 mm, followed by a helical mixing channel with a single outlet.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, P. R. China.
Exhaled breath analysis offers noninvasive, early lung cancer detection via volatile organic compound (VOC) biomarkers, surpassing blood-based methods. Surface-enhanced Raman spectroscopy (SERS) is ideal for this purpose, combining molecular fingerprint specificity with single-molecule sensitivity. However, conventional SERS substrates face a fundamental limitation: while porous materials such as metal-organic frameworks effectively adsorb VOCs through their subnanometer pores (0.
View Article and Find Full Text PDF