A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

MutBERT: probabilistic genome representation improves genomics foundation models. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Motivation: Understanding the genomic foundation of human diversity and disease requires models that effectively capture sequence variation, such as single nucleotide polymorphisms (SNPs). While recent genomic foundation models have scaled to larger datasets and multi-species inputs, they often fail to account for the sparsity and redundancy inherent in human population data, such as those in the 1000 Genomes Project. SNPs are rare in humans, and current masked language models (MLMs) trained directly on whole-genome sequences may struggle to efficiently learn these variations. Additionally, training on the entire dataset without prioritizing regions of genetic variation results in inefficiencies and negligible gains in performance.

Results: We present MutBERT, a probabilistic genome-based masked language model that efficiently utilizes SNP information from population-scale genomic data. By representing the entire genome as a probabilistic distribution over observed allele frequencies, MutBERT focuses on informative genomic variations while maintaining computational efficiency. We evaluated MutBERT against DNABERT-2, various versions of Nucleotide Transformer, and modified versions of MutBERT across multiple downstream prediction tasks. MutBERT consistently ranked as one of the top-performing models, demonstrating that this novel representation strategy enables better utilization of biobank-scale genomic data in building pretrained genomic foundation models.

Availability And Implementation: https://github.com/ai4nucleome/mutBERT.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12261424PMC
http://dx.doi.org/10.1093/bioinformatics/btaf229DOI Listing

Publication Analysis

Top Keywords

genomic foundation
12
mutbert probabilistic
8
foundation models
8
masked language
8
genomic data
8
mutbert
6
genomic
6
models
5
probabilistic genome
4
genome representation
4

Similar Publications