Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Enzyme-catalyzed depolymerization allows efficient recycling of poly(ethylene terephthalate) (PET) bottles, which are easy to sort and made of slowly crystallizing PET. However, because crystalline phases are recalcitrant to enzymatic hydrolysis, this technology fails for rapidly crystallizing polyester wastes such as poly(butylene terephthalate) (PBT), unsortable mixed polyesters, or heterogeneous formulated PET waste streams. We show that melt transesterification and vitrimerization of mixtures of rapidly crystallizing polyester wastes, leveraging catalysts already present, produce copolyesters that crystallize slowly and are readily depolymerized. For example, reactive blending of a rapidly crystallizing postindustrial PET nonwoven waste with PBT improves depolymerization yields from 20% (PET nonwoven) and 1% (PBT) to 90%. Synergistic mixing can replace sorting, extending the scope of enzymatic recycling to recalcitrant, heterogeneous, and unsortable wastes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12305007PMC
http://dx.doi.org/10.1073/pnas.2505611122DOI Listing

Publication Analysis

Top Keywords

polyester wastes
12
rapidly crystallizing
12
crystallizing polyester
8
pet nonwoven
8
pet
5
reactive mixing
4
mixing enables
4
enables enzymatic
4
enzymatic depolymerization
4
depolymerization recalcitrant
4

Similar Publications

An efficient bacterial laccase-mediated system for polyurethane foam degradation.

Front Microbiol

August 2025

Key Laboratory for Waste Plastics Biocatalytic Degradation and Recycling, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China.

Polyurethane (PU), a segmented block copolymer with chemically resistant urethane linkages and tunable architecture, presents persistent biological recycling challenges. This study presents a Bacterial Laccase-Mediated System (BLMS) derived from for efficient degradation of polyester- and polyether-PU. Utilizing the laccase CotA and mediator 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), the BLMS demonstrated effective de polymerization of both commercial and self-synthesized PU foams, including polyester- and polyether-types.

View Article and Find Full Text PDF

Poly(glycolic acid) (PGA) is one of the most widely used biodegradable polyesters, but its efficient valorization presents a long-standing challenge. Herein, we report the first facile PGA valorization strategy by utilizing epoxides to upcycle PGA into fused lactones under mild conditions (<100 °C), and subsequent copolymerization to produce copolyesters with wide potential tunability and enhanced performance. In the presence of epoxides and a chromium-based catalyst, PGA was efficiently transformed into fused lactones with a wide range of potential structural adjustability.

View Article and Find Full Text PDF

The global accumulation of plastic waste, exceeding 360 million tonnes annually, represents a critical environmental challenge due to their widespread use and extreme recalcitrance in natural environments. Furthermore, the end-of-life processing of bioplastics, which are often marketed as eco-friendly, remains problematic, with biodegradation often requiring industrial conditions. Enzyme-based depolymerization of polyesters, such as polyethylene terephthalate (PET) and bioplastics (e.

View Article and Find Full Text PDF

Unveiling potential of Gordonia species and their cutinases for polyester decomposition.

Int J Biol Macromol

September 2025

BOKU University, Department of Agricultural Sciences, Institute of Environmental Biotechnology, Konrad-Lorenz-Strasse 20, 3430 Tulln an der Donau, Austria. Electronic address:

The growing issue of petroleum-based polymer waste demands sustainable recycling strategies, with enzymatic processes offering a promising solution. This study investigates enzymatic decomposition of polyethylene terephthalate (PET) and polybutylene adipate terephthalate (PBAT) by Gordonia species, known for their pollutant-degrading capabilities. When cultivated with PET, G.

View Article and Find Full Text PDF

Theory-guided multifunctional Zn-Salen molecular catalyst for sustainable polyester plastic recycling.

Chem Sci

August 2025

School of Environmental Science and Engineering, Tianjin Key Laboratory of Biomass/Wastes Utilization, Tianjin University Tianjin 300350 China

The escalating global challenge of plastic waste calls for innovative recycling solutions that overcome the high energy requirements of traditional chemical recycling and the inefficiency of enzymatic methods. Here, inspired by the structure of Salen-based molecular catalysts and the hydrolase-mediated degradation mechanism of poly(ethylene terephthalate) (PET), we report a multifunctional Zn-Salen molecular catalyst identified through theoretical screening and experimental validation. This catalyst achieves high PET conversion efficiency under mild conditions with low energy consumption.

View Article and Find Full Text PDF