Modulation of Endoplasmic Reticulum Stress in Experimental Anti-Cancer Therapy.

Int J Mol Sci

Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 44 Thorez Avenue, Saint-Petersburg 194223, Russia.

Published: July 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The growth of tumor cells is accompanied by an increased rate of endoplasmic reticulum stress (ERS), the accumulation of misfolded proteins, and the activation of a network of adaptive signaling pathways known as the unfolded protein response (UPR). Although the UPR is an adaptive reaction aiming to restore ER proteostasis, prolonged and severe ERS leads to cell death. Taking into account that the components of the ERS/UPR machinery in cancers of different types can be overexpressed or downregulated, both the induction of excessive ERS and suppression of UPR have been proposed as therapeutic strategies to sensitize cells to conventional chemotherapy. This narrative review presents a several examples of using natural and synthetic compounds that can either induce persistent ERS by selectively blocking ER Ca pumps (SERCA) to disrupt ER Ca homeostasis, or altering the activity of UPR chaperones and sensors (GRP78, PERK, IRE1α, and ATF6) to impair protein degradation signaling. The molecular alterations induced by miscellaneous inhibitors of ERS/UPR effectors are described as well. These agents showed promising therapeutic effects as a part of combination therapy in preclinical experimental settings; however, the number of clinical trials is still limited, while their results are inconsistent. Multiple side effects, high toxicity to normal cells, or poor bioavailability also hampers their clinical application. Since the pharmacological modulation of ERS/UPR is a valuable approach to sensitize cancer cells to standard chemotherapy, the search for more selective agents with better stability and low toxicity, as well as the development of more efficient delivery systems that can increase their therapeutic specificity, are highly required goals for future studies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12250421PMC
http://dx.doi.org/10.3390/ijms26136407DOI Listing

Publication Analysis

Top Keywords

endoplasmic reticulum
8
reticulum stress
8
modulation endoplasmic
4
stress experimental
4
experimental anti-cancer
4
anti-cancer therapy
4
therapy growth
4
growth tumor
4
cells
4
tumor cells
4

Similar Publications

Correction: Carbon dots with tunable dual emissions: from the mechanism to the specific imaging of endoplasmic reticulum polarity.

Nanoscale

September 2025

Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China.

Correction for 'Carbon dots with tunable dual emissions: from the mechanism to the specific imaging of endoplasmic reticulum polarity' by E. Shuang , , 2020, , 6852-6860, https://doi.org/10.

View Article and Find Full Text PDF

The UFD-1 (ubiquitin fusion degradation 1)-NPL-4 (nuclear protein localization homolog 4) heterodimer is involved in extracting ubiquitinated proteins from several plasma membrane locations, including the endoplasmic reticulum. This heterodimer complex helps in the degradation of ubiquitinated proteins via the proteasome with the help of the AAA+ATPase CDC-48. While the ubiquitin-proteasome system is known to have important roles in maintaining innate immune responses, the role of the UFD-1-NPL-4 complex in regulating immunity remains elusive.

View Article and Find Full Text PDF

Advancements and perspectives on organelle-targeted fluorescent probes for super-resolution SIM imaging.

Chem Sci

September 2025

Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University Nanning Guangxi 530004 China

As a cutting-edge super-resolution imaging technique, structured illumination microscopy (SIM) has been widely used in cell biology research, especially in the analysis of subcellular organelles and monitoring of their dynamic processes. Through multiple illumination and reconstruction processes, SIM breaks through the resolution limitations of traditional microscopes and can observe the fine structures within cells in real time with nanoscale resolution. This provides strong technical support for in-depth analyses of molecular mechanisms, organelle functions, signaling networks, and metabolic regulatory pathways within cells.

View Article and Find Full Text PDF

Photodynamic therapy (PDT) induces cancer cell death by utilizing photosensitizers to generate reactive oxygen species (ROS) upon light irradiation, which in turn trigger oxidative stress. However, the therapeutic efficacy of PDT is constrained by the short lifetimes and limited diffusion range of ROS, resulting in suboptimal outcomes and off-target effects. Specific organelle targeting, facilitated by rationally engineered photosensitizers and nanoplatforms with precise drug delivery capabilities that activate organelle-mediated cell death pathways, can maximize localized oxidative damage, enhance therapeutic efficacy, and minimize systemic toxicity.

View Article and Find Full Text PDF