Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This study investigates the influence of rare earth element Ce addition on the nanoscale precipitation, microstructure, and mechanical properties of Ti-containing secondary phases in high-strength low-alloy weathering steel. Mechanical property testing and microstructural characterization were performed on experimental samples subjected to rolling-aging treatment. The results demonstrate that the addition of Ce promotes coarsening of nanoscale precipitates, thereby diminishing their precipitation strengthening effect. At a 0.11% Ce content, an increase in inclusions was observed, leading to crack formation during hot deformation. However, Ce addition also refines inclusion size and modifies inclusion types, contributing to steel purification. Through austenite recrystallization zone rolling combined with an isothermal process, a high-strength ferritic weathering steel with nanoscale precipitates was fabricated, exhibiting a yield strength of 635 MPa, tensile strength of 750 MPa, and elongation of 21.2%. Precipitation strengthening plays a critical role in enhancing the room-temperature strength of ferritic steel.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12251261PMC
http://dx.doi.org/10.3390/ma18133033DOI Listing

Publication Analysis

Top Keywords

nanoscale precipitates
12
weathering steel
12
rare earth
8
earth element
8
mechanical properties
8
high-strength low-alloy
8
low-alloy weathering
8
precipitation strengthening
8
steel
5
nanoscale
4

Similar Publications

Cadmium (Cd) contamination in water poses a critical global challenge. A novel nanocomposite, montmorillonite (Mt)-supported nanoscale zero-valent iron (Mt-nZVI), synthesized by liquid phase reduction, offers a promising method for effectively removing Cd. The material underwent characterization through various techniques, including X-ray diffraction (XRD) and Scanning Electron Microscope(SEM).

View Article and Find Full Text PDF

Photodynamic therapy (PDT) is a minimally invasive treatment modality that offers an alternative or supplementary approach to chemotherapy and surgery, characterized by low toxicity and reduced side effects. PDT has been applied to various cancers, often in combination with other therapies to enhance its efficacy. The therapy relies on three main components: a photosensitizer (PS), light of a specific wavelength, and molecular oxygen (O).

View Article and Find Full Text PDF

This study reports the sustainable synthesis of a zinc-based metal-organic framework (Zn-BTC MOF) using zinc, extracted from waste dry cell batteries. A three-step route involving zinc recovery, hydroxide precipitation, and solvothermal coordination with 1,3,5-benzenetricarboxylic acid (BTC) led to the formation of crystalline Zn-BTC. Comprehensive characterization, utilizing techniques such as XRD, FTIR, Raman, FESEM, TEM, XPS, EDS, and TGA-DSC, confirmed the formation of a highly ordered Zn-BTC MOF framework structure with nanoscale morphology and thermal stability.

View Article and Find Full Text PDF

Rational design of hierarchical CuO/CuO/SnO branched supernanowires for highly sensitive non-enzymatic glucose sensors.

Nanoscale

September 2025

National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215123, China.

The rational design and synthesis of one-dimensional hierarchical heterojunction materials for high-performance electrocatalytic applications present an enticing prospect in the field of electrochemistry. Herein, barnyardgrass-like CuO/CuO/SnO branched supernanowires were rationally designed and controllably prepared a synergistic process of co-precipitation and microwave treatment to achieve highly sensitive non-enzymatic glucose sensors. These prepared CuO/CuO/SnO ternary hierarchical heterostructures possessed a specific surface area of 102.

View Article and Find Full Text PDF

In this study, nanofibrous scaffolds composed of Polycaprolactone/Collagen (PCL/COL) infused with FeO/Lanthanum/SiO nanocomposite were developed. FeO and La-doped FeO nanoparticles were synthesized using a straightforward co-precipitation method. Silica extracted from Ulmus leaves via green synthesis was used to coat the FeO-La nanocomposite.

View Article and Find Full Text PDF