Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Hydroperoxyalkylperoxy radicals (•OOQOOH) are important intermediates in the low-temperature oxidation chemistry of conventional fuels. In these species, a hydrogen atom may migrate from a non-adjacent carbon to the peroxy group, forming a dihydroperoxyalkyl radical (•P(OOH)). This research delves into the theoretical kinetics of a set of 110 H-migration reactions in normal-alkyl cyclohexanes, calculating high-pressure limit rate constants for these reactions. The reactions are further classified into 15 subclasses based on distinctions in the reaction center and its environment, with rate rules derived by averaging the rate constants within each subclass. A comparison of our calculated rate constants for specific H-migration reactions of •OOQOOH with existing mechanisms and similar reactions in non-cyclic alkanes reveals significant disparities, emphasizing the necessity for precise rate constants tailored to normal-alkyl cyclohexanes. Ethyl cyclohexane mechanisms and n-propyl cyclohexane mechanisms sourced from studies have been improved with high-pressure limit rate constants from this study. Simulations of the low-temperature combustion of ethyl cyclohexane and n-propyl cyclohexane show that the predictions from the updated mechanisms align more closely with the experimental data under specific conditions compared to the original mechanism.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12250757 | PMC |
http://dx.doi.org/10.3390/molecules30132805 | DOI Listing |