A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Computational Kinetic Study on the Intramolecular H-Migration of Hydroperoxyalkylperoxy Radicals (•OOQOOH) in Normal-Alkyl Cyclohexanes. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Hydroperoxyalkylperoxy radicals (•OOQOOH) are important intermediates in the low-temperature oxidation chemistry of conventional fuels. In these species, a hydrogen atom may migrate from a non-adjacent carbon to the peroxy group, forming a dihydroperoxyalkyl radical (•P(OOH)). This research delves into the theoretical kinetics of a set of 110 H-migration reactions in normal-alkyl cyclohexanes, calculating high-pressure limit rate constants for these reactions. The reactions are further classified into 15 subclasses based on distinctions in the reaction center and its environment, with rate rules derived by averaging the rate constants within each subclass. A comparison of our calculated rate constants for specific H-migration reactions of •OOQOOH with existing mechanisms and similar reactions in non-cyclic alkanes reveals significant disparities, emphasizing the necessity for precise rate constants tailored to normal-alkyl cyclohexanes. Ethyl cyclohexane mechanisms and n-propyl cyclohexane mechanisms sourced from studies have been improved with high-pressure limit rate constants from this study. Simulations of the low-temperature combustion of ethyl cyclohexane and n-propyl cyclohexane show that the predictions from the updated mechanisms align more closely with the experimental data under specific conditions compared to the original mechanism.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12250757PMC
http://dx.doi.org/10.3390/molecules30132805DOI Listing

Publication Analysis

Top Keywords

rate constants
20
normal-alkyl cyclohexanes
12
hydroperoxyalkylperoxy radicals
8
radicals •ooqooh
8
h-migration reactions
8
high-pressure limit
8
limit rate
8
ethyl cyclohexane
8
cyclohexane mechanisms
8
n-propyl cyclohexane
8

Similar Publications