A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Using Wearable MEG to Study the Neural Control of Human Stepping. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A central challenge in movement neuroscience is developing methods for non-invasive spatiotemporal imaging of brain activity during natural, whole-body movement. We test the utility of a new brain imaging modality, optically pumped magnetoencephalography (OP-MEG), as an instrument to study the spatiotemporal dynamics of human walking. Specifically, we ask whether known physiological signals can be recovered during discrete steps involving large-scale, whole-body translation. Our findings show that by using OP-MEG, we can image the brain during large-scale, natural movements. We provide proof-of-principle evidence for movement-related changes in beta band activity during stepping vs. standing, which are source-localized to the sensorimotor cortex. This work supports the significant potential of the OP-MEG modality for addressing fundamental questions in human gait research relevant to both the physiological and pathological mechanisms of walking.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12252452PMC
http://dx.doi.org/10.3390/s25134160DOI Listing

Publication Analysis

Top Keywords

wearable meg
4
meg study
4
study neural
4
neural control
4
control human
4
human stepping
4
stepping central
4
central challenge
4
challenge movement
4
movement neuroscience
4

Similar Publications