Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
This study presents a novel investigation into immersive teleoperation systems using collaborative, device-agnostic interfaces for advancing smart haptics in industrial assistive applications. The research focuses on evaluating the quality of experience (QoE) of users interacting with a teleoperation system comprising a local robotic arm, a robot gripper, and heterogeneous remote tracking and haptic feedback devices. By employing a modular device-agnostic framework, the system supports flexible configurations, including one-user-one-equipment (1U-1E), one-user-multiple-equipment (1U-ME), and multiple-users-multiple-equipment (MU-ME) scenarios. The experimental set-up involves participants manipulating predefined objects and placing them into designated baskets by following specified 3D trajectories. Performance is measured using objective QoE metrics, including temporal efficiency (time required to complete the task) and spatial accuracy (trajectory similarity to the predefined path). In addition, subjective QoE metrics are assessed through detailed surveys, capturing user perceptions of presence, engagement, control, sensory integration, and cognitive load. To ensure flexibility and scalability, the system integrates various haptic configurations, including (1) a Touch kinaesthetic device for precision tracking and grounded haptic feedback, (2) a DualSense tactile joystick as both a tracker and mobile haptic device, (3) a bHaptics DK2 vibrotactile glove with a camera tracker, and (4) a SenseGlove Nova force-feedback glove with VIVE trackers. The modular approach enables comparative analysis of how different device configurations influence user performance and experience. The results indicate that the objective QoE metrics varied significantly across device configurations, with the Touch and SenseGlove Nova set-ups providing the highest trajectory similarity and temporal efficiency. Subjective assessments revealed a strong correlation between presence and sensory integration, with users reporting higher engagement and control in scenarios utilizing force feedback mechanisms. Cognitive load varied across the set-ups, with more complex configurations (e.g., 1U-ME) requiring longer adaptation periods. This study contributes to the field by demonstrating the feasibility of a device-agnostic teleoperation framework for immersive industrial applications. It underscores the critical interplay between objective task performance and subjective user experience, providing actionable insights into the design of next-generation teleoperation systems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12252270 | PMC |
http://dx.doi.org/10.3390/s25133993 | DOI Listing |