A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Engineering Properties and Microscopic Mechanisms of Permeable and Flexible Polymer-Improved Sand. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Grouting is an effective method for enhancing the stability of poor strata such as sand layers. The performance of the grouting materials directly influences the effect of stratum reinforcement. To meet the urgent demand for efficient grouting materials, this study selected a high-permeability, flexible polymer (PFP) as the grouting material. The influences of the PFP content, curing time, and dry density on the mechanical and impermeable properties of PFP-improved sand were systematically analyzed via unconfined compressive tests, split tensile tests, and variable head permeability tests. Moreover, the section morphology and pore characteristics of the PFP-improved sand were qualitatively described and quantitatively analyzed by scanning electron microscopy (SEM) and image processing software. The results indicated that the mechanical properties and impermeability of the test sand were significantly improved by adding the PFP, and the improvement effect continued to increase with increasing PFP content, curing time, and dry density. The compressive strength and splitting tensile strength of PFP30 (PFP content of 30%, curing time of 28 d, dry density of 1.5 g/cm) reached 8.3 MPa and 1.4 MPa, respectively. The permeability coefficient reduced to 5.41 × 10 cm/s. The microscopic results revealed that the PFP effectively cemented the isolated sand particles through bridging, filling, and encapsulation as well as substantially filled the internal pores of the test sand. The percentage of the pore area, the total number of pores, and the maximum pore diameter of the test sand were significantly reduced. The pore area percentage, the total number of pores, and the maximum pore diameter of PFP30 were reduced to 0.124, 30, and 213.84 μm, respectively. This study reveals that PFP has potential for application in the grouting construction of poor strata, such as sand layers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12251968PMC
http://dx.doi.org/10.3390/polym17131856DOI Listing

Publication Analysis

Top Keywords

pfp content
12
curing time
12
time dry
12
dry density
12
test sand
12
sand
9
poor strata
8
strata sand
8
sand layers
8
grouting materials
8

Similar Publications