A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Evaluation of Imidazolium Ionenes: Solid-Solid Phase Change Materials as Heat Sinks. | LitMetric

Evaluation of Imidazolium Ionenes: Solid-Solid Phase Change Materials as Heat Sinks.

Polymers (Basel)

Centro de Nanotecnología Aplicada, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Camino La Pirámide 5750, Huechuraba 8580745, Chile.

Published: June 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Overheating in miniaturized electronic devices can reduce their useful life, where conventional heat sinks are insufficient. The utilization of ionenes as solid-solid phase change materials is proposed to enhance thermal dissipation without the risk of leakage. In this work, a series of imidazolium ionenes with structural modifications in their aromatic core and aliphatic chain length were synthesized. The synthesis was carried out using the respective monomers diimidazole and alkyl dibromide, followed by counterion bromide exchange using lithium bis(trifluoromethanesulfonyl)imide, with yields over 90% in all cases. Thermal characterizations showed that all ionenes are heat-resistant, with degradation temperatures between 421 °C and 432 °C; moreover, they all presented only a solid-solid transition (Tg) as a phase change, between 59 °C and 28 °C, which varied depending on the aromatic core used and the length of the aliphatic chain. The obtained ionenes were introduced into an experimental device with an operating temperature of 40 °C, to be evaluated as solid-solid phase change materials in heat sinks. These demonstrated an average decrease in operating temperature of 9 °C compared to the device without ionenes. On the other hand, the stability of the ionenes was analyzed over 10 thermal cycles at 40 °C at a heating rate of 5 °C/min. This analysis demonstrated that the ionenes did not present changes or degradation during the evaluated cycles. These findings demonstrate that imidazolium ionenes are promising solid-solid phase change materials for use as efficient and self-repairing heat sinks in compact electronic devices.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12252075PMC
http://dx.doi.org/10.3390/polym17131782DOI Listing

Publication Analysis

Top Keywords

phase change
20
solid-solid phase
16
change materials
16
heat sinks
16
imidazolium ionenes
12
ionenes
9
ionenes solid-solid
8
materials heat
8
electronic devices
8
aromatic core
8

Similar Publications