Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Ocean acidification, caused by increased atmospheric CO, threatens marine organisms that depend on calcium-based structures such as jellyfish statoliths. This study investigated the effects of low pH on the morphology and statolith formation of ephyrae in , comparing two developmental pathways to form ephyra: polyp-strobilation and planula-strobilation. Under the pH 6.8 condition, polyps failed to produce viable ephyrae, whereas planula-strobilation succeeded in releasing ephyrae with normal morphology, though statoliths were absent. Under the pH 7.8 condition, both strobilation types produced normal-shaped ephyrae with reduced statolith size but increased statolith number compared with the control (pH 8.1), suggesting a compensatory response to acidification. Statolith morphology differed between pathways: planula-strobilated ephyrae had needle-shaped statoliths with high aspect ratios, indicating a rapid, early-stage crystallization process. Despite their minimal body size and statolith development, planula-strobilated ephyrae maintained the functional mass of statoliths necessary for survival. This rapid, morphologically minimized development suggests that planula-strobilation is an adaptive reproductive strategy in response to environmental stress. Our findings suggest that possesses a flexible life history strategy that may facilitate its resilience to ongoing ocean acidification scenarios.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12249036 | PMC |
http://dx.doi.org/10.3390/ani15131999 | DOI Listing |