A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Interaction Between Ruminal Acetate Infusion and Diet Fermentability on Milk Fat Production in Dairy Cows. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Acetate is naturally produced in the rumen through feed degradation and fermentation. It serves as a primary energy source for ruminants and as a key substrate for de novo fatty acid synthesis in the mammary gland. The interaction of exogenous acetate with different animal and dietary factors is an area of growing interest, as it may have significant implications for milk fat synthesis. This study aimed to assess the effect of two diet fermentability levels on the short-term response of lactation to acetate supplementation in dairy cows. Eight ruminally cannulated multiparous European Holstein cows were randomly assigned to treatments in a crossover design that tested the effect of diet fermentability, acetate supply, and their interaction. Using corn silage as the only forage source and a constant forage-to-concentrate ratio, high-fermentability (HF) and low-fermentability (LF) diets were formulated. Acetate supply was investigated by infusing ruminally 10 moles of sodium acetate/d (ACE) or an equimolar infusion of control (CON). Therefore, the treatments were as follows: LF + CON; LF + ACE; HF + CON; and HF + ACE. No interactions between acetate and diet fermentability were found on performance variables. Acetate infusion decreased dry matter intake (DMI), milk yield, and milk protein yield and content but did not affect milk fat yield; however, it increased milk fat concentration, and this response tended to be more pronounced in the HF diet. Acetate infusions increased plasma β-hydroxybutyrate in the HF diet, but not in the LF diet, and increased plasma non-esterified fatty acid, which was likely a lipolysis response to reduced DMI and decreased energy balance. This study demonstrates that acetate availability can be a constraint on mammary lipogenesis, even with adequate dietary fiber.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12248817PMC
http://dx.doi.org/10.3390/ani15131931DOI Listing

Publication Analysis

Top Keywords

diet fermentability
16
milk fat
16
acetate
10
acetate infusion
8
dairy cows
8
fatty acid
8
acetate supply
8
con ace
8
increased plasma
8
diet
7

Similar Publications