Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Strategies to predict neonatal seizure risk have typically focused on long-term static predictions with prediction horizons spanning days during the acute postnatal period. Higher temporal resolution or short-horizon neonatal seizure prediction, on the time-frame of minutes, remains unexplored. Here, we investigated quantitative electroencephalography (QEEG) based deep learning (DL) for short-horizon seizure prediction. We used two publicly available EEG seizure datasets with a total of 132 neonates containing a total of 281 hours of EEG data. We benchmarked current state-of-the-art time-series DL methods for seizure prediction, identifying convolutional LSTM (ConvLSTM) as having the strongest performance at preictal state classification. We assessed ConvLSTM performance in a seizure alarm system over varying short-range (1-7 minutes) seizure prediction horizons (SPH) and seizure occurrence periods (SOP) and identified optimal performance at SPH 3 min and SOP 7 min, with AUROC 0.8. At 80% sensitivity, false detection rate was 0.68 events/hour with time-in-warning of 0.36. Model calibration was moderate, with an expected calibration error of 0.106. These findings establish the feasibility of short-horizon neonatal seizure prediction and warrant the need for further validation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12250315 | PMC |
http://dx.doi.org/10.1371/journal.pdig.0000890 | DOI Listing |