A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Short-horizon neonatal seizure prediction using EEG-based deep learning. | LitMetric

Short-horizon neonatal seizure prediction using EEG-based deep learning.

PLOS Digit Health

Department of Neurology and Weill Institute for Neurosciences, University of California San Francisco, San Francisco, California, United States of America.

Published: July 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Strategies to predict neonatal seizure risk have typically focused on long-term static predictions with prediction horizons spanning days during the acute postnatal period. Higher temporal resolution or short-horizon neonatal seizure prediction, on the time-frame of minutes, remains unexplored. Here, we investigated quantitative electroencephalography (QEEG) based deep learning (DL) for short-horizon seizure prediction. We used two publicly available EEG seizure datasets with a total of 132 neonates containing a total of 281 hours of EEG data. We benchmarked current state-of-the-art time-series DL methods for seizure prediction, identifying convolutional LSTM (ConvLSTM) as having the strongest performance at preictal state classification. We assessed ConvLSTM performance in a seizure alarm system over varying short-range (1-7 minutes) seizure prediction horizons (SPH) and seizure occurrence periods (SOP) and identified optimal performance at SPH 3 min and SOP 7 min, with AUROC 0.8. At 80% sensitivity, false detection rate was 0.68 events/hour with time-in-warning of 0.36. Model calibration was moderate, with an expected calibration error of 0.106. These findings establish the feasibility of short-horizon neonatal seizure prediction and warrant the need for further validation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12250315PMC
http://dx.doi.org/10.1371/journal.pdig.0000890DOI Listing

Publication Analysis

Top Keywords

seizure prediction
24
neonatal seizure
16
short-horizon neonatal
12
seizure
10
deep learning
8
prediction horizons
8
prediction
7
short-horizon
4
prediction eeg-based
4
eeg-based deep
4

Similar Publications