A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

MRI sequence focused on pancreatic morphology evaluation: three-shot turbo spin-echo with deep learning-based reconstruction. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

BackgroundHigher-resolution magnetic resonance imaging sequences are needed for the early detection of pancreatic cancer.PurposeTo compare the quality of our novel T2-weighted, high-contrast, thin-slice imaging sequence, with an improved spatial resolution and deep learning-based reconstruction (three-shot turbo spin-echo with deep learning-based reconstruction [3S-TSE-DLR]), for imaging the pancreas with imaging using three conventional sequences (half-Fourier acquisition single-shot turbo spin-echo [HASTE], fat-suppressed 3D T1-weighted [FS-3D-T1W] imaging, and magnetic resonance cholangiopancreatography [MRCP]).Material and MethodsPancreatic images of 50 healthy volunteers acquired with 3S-TSE-DLR, HASTE, FS-3D-T1W imaging, and MRCP were compared by two diagnostic radiologists. A 5-point scale was used for assessing motion artifacts, pancreatic margin sharpness, and the ability to identify the main pancreatic duct (MPD) on 3S-TSE-DLR, HASTE, and FS-3D-T1W imaging, respectively. The ability to identify MPD via MRCP was also evaluated.ResultsArtifact scores (the higher the score, the fewer the artifacts) were significantly higher for 3S-TSE-DLR than for HASTE, and significantly lower for 3S-TSE-DLR than for FS-3D-T1W imaging, for both radiologists. Sharpness scores were significantly higher for 3S-TSE-DLR than for HASTE and FS-3D-T1W imaging, for both radiologists. The rate of identification of MPD was significantly higher for 3S-TSE-DLR than for FS-3D-T1W imaging, for both radiologists, and significantly higher for 3S-TSE-DLR than for HASTE for one radiologist. The rate of identification of MPD was not significantly different between 3S-TSE-DLR and MRCP.Conclusion3S-TSE-DLR provides better image sharpness than conventional sequences, can identify MPD equally as well or better than HASTE, and shows identification performance comparable to that of MRCP.

Download full-text PDF

Source
http://dx.doi.org/10.1177/02841851251355844DOI Listing

Publication Analysis

Top Keywords

3s-tse-dlr haste
20
fs-3d-t1w imaging
20
higher 3s-tse-dlr
16
turbo spin-echo
12
deep learning-based
12
learning-based reconstruction
12
haste fs-3d-t1w
12
imaging radiologists
12
imaging
10
three-shot turbo
8

Similar Publications