Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Why river channels confine flow to a single pathway or divide flow into multiple interwoven pathways (threads) forms a long-standing fundamental question in river science, which to date remains poorly understood. In this study, we probed channel-pattern origins by mapping thread dynamics along 84 rivers from 36 years of global satellite imagery using particle image velocimetry. Results show that single-thread channels originate from a balance between lateral erosion and accretion, which enables a thread to migrate while maintaining equilibrium width. In contrast, multithread channels originate from imbalance-erosion outpaces accretion in individual threads, causing threads to repeatedly widen and split. Thread-width imbalance provides a mechanistic explanation for how multithread channels develop on Earth and other planets and, in application, can help lower the cost of nature-based river restoration projects.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1126/science.ads6567 | DOI Listing |