98%
921
2 minutes
20
A description of the construction of the bioengineered P4-EKORhE and a comprehensive method for producing very high yields (up to 10 particles per millilitre) enable the use of virus-like particles to transduce genetically encoded antimicrobials through a combination of synthetic biology and optimised upstream and downstream processing. The final product, a gene-delivered antimicrobial in the form of the multi-lysin cassette, is fully functional before and after packaging within P4-EKORhE particles. The antimicrobial activity of the multi-lysin cassette, characterised by its lysis proteins, was tested in both pure bacterial cultures and a model of phage infection in co-culture with A549 immortalised human epithelial tissue cells. This work exemplifies several bioproduction methods and demonstrates how the virology of the P4 and P2 phages can be harnessed to establish a bioprocess for producing transducing particles at very high yields, avoiding contamination by the natural virus while maintaining the antimicrobial effectiveness of the final product.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12239096 | PMC |
http://dx.doi.org/10.3389/fcimb.2025.1561443 | DOI Listing |
Biomater Adv
September 2025
Key Laboratory of Artificial Intelligence & Micro Nano Sensors, Shanxi Province, College of Integrated Circuits, Taiyuan University of Technology, Taiyuan, China; Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan, C
This study addresses critical technical challenges in fabricating functional pigmented skin models via 3D bioprinting through the synergistic integration of droplet-based deposition and precision motion control. A hybrid bioprinting strategy was developed to create multilayer biomimetic architectures: the dermal layer was fabricated through extrusion of gelatin methacryloyl-polyacrylamide (GelMA-PAM) composites, while the epidermal layer incorporated precisely patterned melanocyte-laden GelMA-PAM arrays deposited via microvalve technology, subsequently solidified and populated with keratinocytes. To enhance printing reliability, a fractional-order proportional-integral control system optimized through particle swarm optimization (PSO-FOPI) was implemented, significantly improving motor speed regulation and positioning accuracy.
View Article and Find Full Text PDFNano Energy
August 2025
Binghamton University, 4400 Vestal Parkway East, Binghamton, NY 13902, USA.
This study investigates the energy harvesting and sensing capabilities of piezoelectric nanogenerators (PENG) and triboelectric nanogenerators (TENG) for long-term load monitoring in total knee replacement (TKR). Multi-layered polyvinylidene fluoride (PVDF) films and cuboid-patterned silicone rubber embedded with dopamine-coated BaTiO particles (SR/BT@PDA) TENG are compared as energy harvesting-based load sensors. Unlike prior studies relying on simplified harmonic loading, this work utilizes physiologically relevant gait cycles covering realistic force ranges to precisely evaluate electrical output, sensitivity, and activity recognition capabilities.
View Article and Find Full Text PDFNat Commun
August 2025
Max Planck Institute for Medical Research, Heidelberg, Germany.
The ability to dynamically shape ultrasound fields is critical for emerging applications in therapeutic ultrasound, particle manipulation and tissue engineering. While existing phased arrays provide beam steering for imaging, these newer applications require higher intensities. This complicates the electrical driving and ultimately limits the array size and spatial complexity of the field.
View Article and Find Full Text PDFMicromachines (Basel)
August 2025
Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, UK.
In recent years, various devices utilizing surface acoustic waves (SAW) have emerged as powerful tools for manipulating particles and fluids in microchannels. Although they demonstrate a wide range of functionalities across diverse applications, existing devices still face limitations in flexibility, manipulation efficiency, and spatial resolution. In this study, we developed a dual-sided standing surface acoustic wave (SSAW) device that simultaneously excites acoustic waves through two piezoelectric substrates positioned at the top and bottom of a microchannel.
View Article and Find Full Text PDFBMC Biotechnol
August 2025
Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China.
Background: Natural killer (NK) cell immunotherapy is a promising approach for cancer treatment. However, its extensive clinical application was limited to the large-scale clinical-grade expansion of NK cells. In this study, we expanded NK cells from healthy donor's peripheral blood mononuclear cells (PBMCs) using a newly designed K562 feeder cell line.
View Article and Find Full Text PDF