Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Tonsilloliths can be seen on panoramic radiographs (PRs) as deposits located on the middle portion of the ramus of the mandible. Although tonsilloliths are clinically harmless, the high risk of misdiagnosis leads to unnecessary advanced examinations and interventions, thus jeopardizing patient safety and increasing unnecessary resource use in the healthcare system. Therefore, this study aims to meet an important clinical need by providing accurate and rapid diagnostic support. The dataset consisted of a total of 275 PRs, with 125 PRs lacking tonsillolith and 150 PRs having tonsillolith. ResNet and EfficientNet CNN models were assessed during the model selection process. An evaluation was conducted to analyze the learning capacity, intricacy, and compatibility of each model with the problem at hand. The effectiveness of the models was evaluated using accuracy, recall, precision, and F1 score measures following the training phase. Both the ResNet18 and EfficientNetB0 models were able to differentiate between tonsillolith-present and tonsillolith-absent conditions with an average accuracy of 89%. ResNet101 demonstrated underperformance when contrasted with other models. EfficientNetB1 exhibits satisfactory accuracy in both categories. The EfficientNetB0 model exhibits a 93% precision, 87% recall, 90% F1 score, and 89% accuracy. This study indicates that implementing AI-powered deep learning techniques would significantly improve the clinical diagnosis of tonsilloliths.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12241531 | PMC |
http://dx.doi.org/10.1038/s41598-025-10489-x | DOI Listing |