A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Multimodal sensory overload in dopamine-deficient larval zebrafish leads to paradoxical kinesia. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Paradoxical kinesia-the temporary alleviation of motor deficits by powerful, urgent stimuli in Parkinson's disease (PD)-remains poorly understood at the neural circuit level. Through chemo-genetic ablation of tyrosine hydroxylase-expressing neurons in larval zebrafish and brain-wide calcium imaging under head-fixed, tail-free conditions, we uncovered a neural mechanism underlying this phenomenon. While catecholamine (CA)-deficient larvae exhibited severe locomotor deficits during free swimming, they showed paradoxical recovery of tail movements during whole-brain neural activity imaging. This locomotor recovery was accompanied by a significantly increased number of active neurons in the midbrain and hindbrain, but with reduced firing rates. Further analyses across 2158 anatomically defined regions allowed us to uncover a subset of regions, genes, and neurotransmitter types. GABAergic neurons were found to primarily account for the hyperactivity in the hindbrain, while glutamatergic neurons accounted for the hyperactivity in the midbrain. Hierarchical clustering of neuronal activity with tail movements revealed distinct motor- and non-motor-associated hyperactive clusters in the hindbrain and midbrain, respectively. We identified the Mesencephalic Locomotor Region (MLR) sandwiched between these domains, with enhanced glutamatergic firing rate and cholinergic activation. Furthermore, we found that Telencephalic corticotropin-releasing factor b (crhb) expressing neurons play a crucial role in mediating stress-response to the tectum, which in turn triggers a cascade of neuronal hyperactivity downstream via MLR. These findings reveal a neural mechanism that links stress-induced sensory processing with motor control systems in the absence of regulatory feedback from catecholaminergic neurons, suggesting a direct, unmodulated pathway that bypasses typical inhibitory controls.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12236737PMC
http://dx.doi.org/10.1101/2025.06.30.662454DOI Listing

Publication Analysis

Top Keywords

larval zebrafish
8
neural mechanism
8
tail movements
8
neurons
6
multimodal sensory
4
sensory overload
4
overload dopamine-deficient
4
dopamine-deficient larval
4
zebrafish leads
4
leads paradoxical
4

Similar Publications