A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Integrating radiomic texture analysis and deep learning for automated myocardial infarction detection in cine-MRI. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Robust differentiation between infarcted and normal myocardial tissue is essential for improving diagnostic accuracy and personalizing treatment in myocardial infarction (MI). This study proposes a hybrid framework combining radiomic texture analysis with deep learning-based segmentation to enhance MI detection on non-contrast cine cardiac magnetic resonance (CMR) imaging.The approach incorporates radiomic features derived from the Gray-Level Co-Occurrence Matrix (GLCM) and Gray-Level Run Length Matrix (GLRLM) methods into a modified U-Net segmentation network. A three-stage feature selection pipeline was employed, followed by classification using multiple machine learning models. Early and intermediate fusion strategies were integrated into the hybrid architecture. The model was validated on cine-CMR data from the SCD and Kaggle datasets.Joint Entropy, Max Probability, and RLNU emerged as the most discriminative features, with Joint Entropy achieving the highest AUC (0.948). The hybrid model outperformed standalone U-Net in segmentation (Dice = 0.887, IoU = 0.803, HD95 = 4.48 mm) and classification (accuracy = 96.30%, AUC = 0.97, precision = 0.96, recall = 0.94, F1-score = 0.96). Dimensionality reduction via PCA and t-SNE confirmed distinct class separability. Correlation coefficients (r = 0.95-0.98) and Bland-Altman plots demonstrated high agreement between predicted and reference infarct sizes.Integrating radiomic features into a deep learning segmentation pipeline improves MI detection and interpretability in cine-CMR. This scalable and explainable hybrid framework holds potential for broader applications in multimodal cardiac imaging and automated myocardial tissue characterization.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12238615PMC
http://dx.doi.org/10.1038/s41598-025-08127-7DOI Listing

Publication Analysis

Top Keywords

radiomic texture
8
texture analysis
8
analysis deep
8
deep learning
8
automated myocardial
8
myocardial infarction
8
myocardial tissue
8
hybrid framework
8
radiomic features
8
u-net segmentation
8

Similar Publications