Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Relational reasoning is the ability to infer and understand the relations between multiple elements. In humans, this ability supports higher cognitive functions and is linked to fluid intelligence. Relational complexity (RC) is a cognitive framework that offers a generalisable method for classifying the complexity of reasoning problems. To date, increased RC has been linked to static patterns of brain activity supported by the frontoparietal system, but limited work has assessed the multivariate spatiotemporal dynamics that code for RC. To address this, we conducted representational similarity analysis in two independent neuroimaging datasets (Dataset 1 fMRI, n = 40; Dataset 2 EEG, n = 45), where brain activity was recorded while participants completed a visuospatial reasoning task that included different levels of RC (Latin Square Task). Our findings revealed that spatially, RC representations were widespread, peaking in brain networks associated with higher-order cognition (frontoparietal, dorsal-attention, and cingulo-opercular). Temporally, RC was represented in the 2.5-4.1 s post-stimuli window and emerged in the alpha and beta frequency range. Finally, multimodal fusion analysis demonstrated that shared variability within EEG-fMRI signals within higher-order cortical networks were better explained by the theorized RC model, relative to a model of cognitive effort (CE). Altogether, the results further our understanding of the neural representations supporting relational processing, highlight the spatially distributed coding of RC and CE across cortical networks, and emphasize the importance of late-stage, frequency-specific neural dynamics in resolving RC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12231057PMC
http://dx.doi.org/10.1002/hbm.70272DOI Listing

Publication Analysis

Top Keywords

cortical networks
12
neural representations
8
alpha beta
8
higher-order cortical
8
brain activity
8
relational
4
relational integration
4
integration demands
4
demands tracked
4
tracked temporally
4

Similar Publications

Layer 6 corticothalamic (L6CT) neurons project to both cortex and thalamus, inducing multiple effects including the modulation of cortical and thalamic firing, and the emergence of high gamma oscillations in the cortical local field potential (LFP). We hypothesize that the high gamma oscillations driven by L6CT neuron activation reflect the dynamic engagement of intracortical and cortico-thalamo-cortical circuits. To test this, we optogenetically activated L6CT neurons in NTSR1-cre mice (both male and female) expressing channelrhodopsin-2 in L6CT neurons.

View Article and Find Full Text PDF

Transcranial temporal interference stimulation (tTIS) has recently emerged as a non-invasive neuromodulation method aimed at reaching deeper brain regions than conventional techniques. However, many questions about its effects remain, requiring further experimental studies. This review consolidates the experimental literature on tTIS's effects in the human brain, clarifies existing evidence, identifies knowledge gaps, and proposes future research directions to evaluate its potential.

View Article and Find Full Text PDF

Cortical versus hippocampal network dysfunction in a human brain assembloid model of epilepsy and intellectual disability.

Cell Rep

September 2025

Department of Neurology, University of California, Los Angeles, David Geffen School of Medicine, Los Angeles, CA 90095, USA; Department of Neurobiology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Un

Neurodevelopmental disorders often impair multiple cognitive domains. For instance, a genetic epilepsy syndrome might cause seizures due to cortical hyperexcitability and present with memory impairments arising from hippocampal dysfunction. This study examines how a single disorder differentially affects distinct brain regions using induced pluripotent stem cell (iPSC)-derived cortical- and hippocampal-ganglionic eminence assembloids to model developmental and epileptic encephalopathy 13, a condition arising from gain-of-function mutations in the SCN8A gene encoding the sodium channel Nav1.

View Article and Find Full Text PDF

Distinct neural mechanisms underlying cognitive difficulties in preterm children born at different stages of prematurity.

Neuroimage Clin

September 2025

Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden; Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden.

Objectives: To examine associations between low cognitive-performance and regional-and network-level brain changes at ages 9-10 in very-preterm, moderately-preterm, and full-term children, and explore whether these alterations predict ASD/ADHD symptoms at age 12.

Methods: This longitudinal population-based study included 9-10-year-old U.S.

View Article and Find Full Text PDF

The lateral prefrontal cortex (LPFC) serves as a critical hub for higher-order cognitive and executive functions in the human brain, coordinating brain networks whose disruption has been implicated in many neurological and psychiatric disorders. While transcranial brain stimulation treatments often target the LPFC, our current understanding of connectivity profiles guiding these interventions based on electrophysiology remains limited. Here, we present a high-resolution probabilistic map of bidirectional effective connectivity between the LPFC and widespread cortical and subcortical regions.

View Article and Find Full Text PDF