Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
The brain-gut-microbiome (BGM) axis regulates interoception, metabolism, and immunity, with dysfunction linked to IBS, obesity, and mood disorders. Ultra-high-field (UHF) MRI advances neural imaging, enhancing resolution of vagal and spinal circuits mediating gut-brain communication. UHF enables real-time tracking of interventions like vagus nerve stimulation and probiotics, linking microbiome shifts to neural adaptations. Despite challenges like signal distortions, innovations in coil design are improving imaging fidelity. Integrating neuroimaging with multi-omic profiling fosters a systems-level approach, advancing personalized therapies for BGM disorders. This commentary underscores UHF MRI's transformative potential in bridging neuroscience, microbiome science, and clinical applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuroimage.2025.121360 | DOI Listing |