A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Behavioral Classification of Sequential Neural Activity Using Time Varying Recurrent Neural Networks. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Shifts in data distribution across time can strongly affect early classification of time-series data. When decoding behavior from neural activity, early detection of behavior may help in devising corrective neural stimulation before the onset of behavior. Recurrent neural networks are common models for sequence data. However, standard recurrent neural networks are not able to handle data with temporal distributional shifts to guarantee robust classification across time. To enable the network to utilize all temporal features of the neural input data, and to enhance the memory of recurrent neural networks, this paper proposes a novel approach: recurrent neural networks with time-varying weights, here termed Time-varying recurrent neural networks. These models are able to not only predict the class of the time-sequence correctly, but also lead to accurate classification earlier in the sequence than standard recurrent neural networks, while also stabilizing gradient dynamics. This paper focuses on early sequential classification of spatially distributed neural activity across time using Time-varying recurrent neural networks applied to a variety of neural data from mice and humans, as subjects perform motor tasks. Time-varying recurrent neural networks detect self-initiated lever-pull behavior up to 6 seconds before behavior onset-3 seconds earlier than standard recurrent neural networks. Finally, this paper explored the contribution of different brain regions on behavior classification using SHapley Additive exPlanation value, and found that the somatosensory and premotor regions play a large role in behavioral classification.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12398402PMC
http://dx.doi.org/10.1109/TNSRE.2025.3586175DOI Listing

Publication Analysis

Top Keywords

recurrent neural
40
neural networks
40
neural
16
neural activity
12
standard recurrent
12
time-varying recurrent
12
recurrent
10
networks
10
behavioral classification
8
activity time
8

Similar Publications