Accurate Free Energy Calculation via Multiscale Simulations Driven by Hybrid Machine Learning and Molecular Mechanics Potentials.

J Chem Theory Comput

Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States.

Published: July 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This work develops a hybrid machine learning/molecular mechanics (ML/MM) interface integrated into the AMBER molecular simulation package. The resulting platform is highly versatile, accommodating several advanced machine learning interatomic potential (MLIP) models while providing stable simulation capabilities and supporting high-performance computations. Building upon this robust foundation, we developed new computational protocols to enable pathway-based and end point-based free energy calculation methods utilizing ML/MM hybrid potential. In particular, we proposed an ML/MM-compatible thermodynamic integration (TI) framework that adequately addressed the challenge of applying MLIPs in TI calculations due to its indivisible nature of energy and force. Our results demonstrated that the hydration free energies calculated using this framework achieved an accuracy of 1.0 kcal/mol, outperforming the traditional approaches. Moreover, ML/MM enables more precise sampling of conformational ensembles for improved end point-based free energy calculations. Overall, our efficient, stable, and highly compatible interface not only broadens the application of MLIPs in multiscale simulations but also enhances the accuracy of free energy calculations from multiple aspects. By introducing a novel ML/MM-compatible thermodynamic integration framework, we offered a novel foundation for combining advanced multiscale simulation methodologies with highly accurate free energy calculation techniques, thereby opening new avenues and providing a robust theoretical framework for future developments in this field.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12288004PMC
http://dx.doi.org/10.1021/acs.jctc.5c00598DOI Listing

Publication Analysis

Top Keywords

free energy
20
energy calculation
12
accurate free
8
multiscale simulations
8
hybrid machine
8
machine learning
8
point-based free
8
ml/mm-compatible thermodynamic
8
thermodynamic integration
8
integration framework
8

Similar Publications

This study investigated the effect of refining time on the physicochemical and functional properties of anhydrous cream prepared from a palm-sunflower oil blend using a stirred ball mill. Refining was performed for 0-300 min, and its impact on particle size distribution, rheology, oxidative stability, and thermal behavior was assessed. The target particle fineness (D90 ≤ 30 μm) was achieved at approximately 180 min, with negligible reduction thereafter.

View Article and Find Full Text PDF

The study of electrochemical oxidations has wide-ranging implications, from the development of new electrocatalysts for fuel cells for energy conversion, to the synthesis of fine chemicals. 2,2,6,6-Tetramethylpiperidine-1-oxyl (TEMPO) has been used for decades as a sustainable, metal-free mediator for chemical oxidations and is now being used for electrochemical oxidations. We describe here a novel approach to TEMPO-mediated electrooxidations, in which the chemical input and waste generated during electrooxidations of alcohols are minimized by using a multifunctional room temperature ionic liquid (RTIL) to facilitate flow electrosynthesis.

View Article and Find Full Text PDF

This work elucidates the thermo-kinetics of the thermal conversion of cameroonian kaolin to metakaolin as the main product. The thermokinetical parameters (activation energy and pre-exponential factor ) for the kaolin conversion were calculated using model-free methods, the Kissinger-Akahira-Sunrose (KAS) and the Flynn-Wall-Ozawa (FWO) method, and differential methods (Kissinger and Ozawa) additionally including iterative procedures for KAS and FWO methods (KAS-Ir; FWO-Ir). The cameroonian kaolin was heat-treated using three different heating rates, 5, 20 and 40 K min, leading to metakaolin samples named MK-(5), MK-(20) and MK-(40).

View Article and Find Full Text PDF

Phytophthora root rot caused by the hemibiotrophic oomycete, is a major biotic hindrance in meeting the ever-increasing demand for avocados. In addition, the pathogen is a global menace to agriculture, horticulture and forestry. Phosphite trunk injections and foliar sprays remain the most effective chemical management strategy used in commercial avocado orchards against the pathogen.

View Article and Find Full Text PDF

The reversible covalent bond formation that underpins dynamic covalent chemistry (DCC) enables the construction of stimuli-responsive systems and the efficient assembly of complex architectures. While most DCC studies have focused on systems at thermodynamic equilibrium, there is growing interest in systems that operate away from equilibrium-either by shifting to a new free-energy landscape in response to a stimulus, or by accessing an out-of-equilibrium state following an energy input. Imine-based systems are especially attractive due to the accessibility of their building blocks and their dynamic behavior in both condensation and transimination reactions.

View Article and Find Full Text PDF