Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
In the era of big data, the simultaneous analysis of multiple high-dimensional, heavy-tailed datasets has become essential. Integrative analysis offers a powerful approach to combine and synthesize information from these various datasets, and often outperforming traditional meta-analysis and single-dataset analysis. In this paper, we introduce a novel high-dimensional integrative quantile regression that can accommodate the complexities inherent in multi-dataset analysis. A contrast penalty that smooths regression coefficients is introduced to account for across-dataset structures and improve variable selection. To ease the computational burden associated with high-dimensional quantile regression, a new algorithm is developed that is effective at computing solution paths and selecting significant variables. Monte Carlo simulations demonstrate its competitive performance. Additionally, the proposed method is applied to data from the China Health and Retirement Longitudinal Study, illustrating its practical utility in identifying influential factors affecting support income for the elderly. Findings indicate that adult children's individual characteristics and emotional comfort are primary factors of support income, and the extent of their impact varies across regions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12217111 | PMC |
http://dx.doi.org/10.1080/02664763.2024.2438799 | DOI Listing |