A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

CT-based deep learning radiomics analysis for preoperative Lauren classification in gastric cancer and explore the tumor microenvironment. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Purpose: This study aimed to investigate the usefulness of CT-based deep learning radiomics analysis (DLRA) for preoperatively differentiating Lauren classification in gastric cancer (GC) patients and explore the tumor microenvironment.

Methods: 578 patients were recruited from January 2015 to June 2024, and divided into the training cohort (n = 311), the internal validation cohort (n = 132), and the external validation cohort (n = 135). Clinical characteristics were collected. Radiomics features were extracted from CT images at arterial phase (AP) and venous phase (VP). A radiomics nomogram incorporating radiomics signature and clinical information was built for distinguishing Lauren classification, and its discrimination, calibration, and clinical usefulness were evaluated. RNA sequencing data from The Cancer Imaging Archive database were used to perform transcriptomics analysis.

Results: The nomogram incorporating the two radiomics signatures and clinical characteristics exhibited good discrimination of Lauren classification on all cohorts [overall C-indexes 0.815 (95 % CI: 0.739-0.869) in the training cohort, 0.785 (95 % CI: 0.702-0.834) in the internal validation cohort, 0.756 (95 % CI: 0.685-0.816) in the external validation cohort]. It outperformed the clinical model in predictive ability. The calibration and decision curve substantiated the model's excellent fitness and clinical applicability. Further, transcriptomics analysis showed that the differentially expressed genes of different Lauren types were mainly enriched in pathways related to cell contraction and migration, and the infiltration degree of various immune cells was also significantly different.

Conclusions: DLRA effectively differentiated Lauren classification in GC, and our analysis of transcriptomic data across different Lauren subtypes revealed the heterogeneity within the GC microenvironment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12221457PMC
http://dx.doi.org/10.1016/j.ejro.2025.100667DOI Listing

Publication Analysis

Top Keywords

lauren classification
20
validation cohort
12
ct-based deep
8
deep learning
8
learning radiomics
8
radiomics analysis
8
classification gastric
8
gastric cancer
8
explore tumor
8
training cohort
8

Similar Publications