98%
921
2 minutes
20
Blood metabolomes have been linked to osteoporosis, yet the precise causal relationship with osteopenia, its preventable early stage, remains unclear. This study aimed to uncover the genetic causality between blood metabolomes and osteopenia, pinpointing potential targets for mechanomedicine. Utilizing genome-wide association study summary statistics, we analyzed 1091 metabolites and 309 metabolite ratios from 8299 individuals, correlating them with total body bone mineral density (BMD) from 56,284 individuals in the IEU GWAS database and osteopenia data from 408,961 European populations. Through two-sample Mendelian randomization, we investigated the association between blood metabolomes and skeletal characteristics. We then conducted summary-data-based Mendelian randomization (MR) analysis and colocalization analyses to identify causal genes related to skeletal phenotypes, predicting therapeutic targets for osteopenia. Expression of potential targets in osteocytes under fluid shear stress (FSS) stimulation was tested using qRT-PCR to explore mechanical sensitivity and bone health mechanisms. Our findings revealed five metabolites affecting total body BMD and osteopenia, with biliverdin emerging as a potential protective factor against osteopenia (OR = 0.93, 95 %CI = 0.88-0.98, = 0.009). Additionally, three genes-LRRC14, SLC22A16, and TNFRSF1A-were identified as potential therapeutic targets for osteopenia. Notably, LRRC14 and TNFRSF1A are also associated with other musculoskeletal diseases. In vitro experiments showed that FSS significantly increased LRRC14 expression in osteocytes, suggesting its potential as a mechanosensitive factor. This study identifies candidate blood metabolites and mechanomedicine targets for osteopenia, offering a scientific basis for new diagnostic and treatment strategies and deepening our understanding of bone mechanics response characteristics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12213289 | PMC |
http://dx.doi.org/10.1016/j.mbm.2025.100137 | DOI Listing |
Parasite Immunol
September 2025
Department of Parasitology, Leiden University Medical Center, Leiden, the Netherlands.
Schistosome parasites are known to modulate host immune responses, which is achieved in part through the release of excretory/secretory (ES) products, including extracellular vesicles (EVs). During chronic schistosomiasis, increased regulatory responses are found, which include enhanced IL-10 production by B (Breg) cells. ES products from schistosome eggs are able to induce IL-10 production by B cells.
View Article and Find Full Text PDFCurr Drug Metab
September 2025
First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming 650500, China.
Background: Tetrandrine (TET) demonstrates therapeutic potential for hypoxic pulmonary hypertension (HPH); however, its precise pharmacological mechanisms remain unclear. In this study, we aimed to investigate the effects of TET on pulmonary vascular remodeling (PVR) in HPH and elucidate the molecular pathways through which TET ameliorates HPH.
Methods: We established a rat model of HPH and evaluated the therapeutic effects of TET by measuring hemodynamic parameters, assessing right ventricular hypertrophy, and analyzing pathological changes in lung tissue.
Atherosclerosis
September 2025
Division of Biotherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands. Electronic address:
Background And Aim: Atherosclerosis has an auto-immune component driven by self-reactive T and B cells. Identifying their antigenic drivers may lead to new diagnosis and treatment approaches. Here, we aim to identify immunogenic T cell epitopes derived from atherosclerosis-relevant proteins such as ApoB100 by studying the repertoire of peptides presented by HLA in human plaques.
View Article and Find Full Text PDFTalanta
September 2025
Department of Chemistry, Faculty of Mathematics and Natural Sciences, University of Oslo, 0371, Oslo, Norway; Hybrid Technology Hub - Centre of Excellence, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0315, Oslo, Norway. Electronic address:
Dried blood spots (DBS) offer a practical and relatively non-invasive method for sample collection. Here, we evaluate the feasibility of applying H NMR spectroscopy to metabolomic analysis of DBS. Various solvent suppression techniques and extraction protocols were tested using aqueous and methanolic solvents.
View Article and Find Full Text PDFBMC Microbiol
September 2025
Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada.
Background: A plant-focused, healthy dietary pattern, such as the Mediterranean diet enriched with dietary fiber, polyphenols, and polyunsaturated fats, is well known to positively influence the gut microbiota. Conversely, a processed diet high in saturated fats and sugars negatively impacts gut diversity, potentially leading to weight gain, insulin resistance, and chronic, low-grade inflammation. Despite this understanding, the mechanisms by which the Mediterranean diet impacts the gut microbiota and its associated health benefits remain unclear.
View Article and Find Full Text PDF