Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Accurate climate predictions are essential for agriculture, urban planning, and disaster management. Traditional forecasting methods often struggle with regional accuracy, computational demands, and scalability. This study proposes a Transformer-based deep learning model for daily temperature forecasting, utilizing historical climate data from Delhi (2013-2017, consisting of 1,500 daily records). The model integrates three key components: Spatial-Temporal Fusion Module (STFM) to capture spatiotemporal dependencies, Hierarchical Graph Representation and Analysis (HGRA) to model structured climate relationships, and Dynamic Temporal Graph Attention Mechanism (DT-GAM) to enhance temporal feature extraction. To improve computational efficiency and feature selection, we introduce a hybrid optimization approach (HWOA-TTA) that combines the Whale Optimization Algorithm (WOA) and Tiki-Taka Algorithm (TTA). Experimental results demonstrate that the proposed model outperforms baseline models (RF-LSTM-XGBoost, cGAN, CNN + LSTM, and MC-LSTM) by achieving 7.8% higher accuracy, 6.3% improvement in recall, and 8.1% enhancement in F1-score. Additionally, training time is reduced by 22.4% compared to conventional deep learning models, demonstrating improved computational efficiency. These findings highlight the effectiveness of hierarchical graph-based deep learning models for scalable and accurate climate forecasting. Future work will focus on validating the model across diverse climatic regions and enhancing real-time deployment feasibility.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12222477 | PMC |
http://dx.doi.org/10.1038/s41598-025-07897-4 | DOI Listing |