Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Alzheimer's disease (AD) is a multifactorial neurodegenerative disorder that presents with heterogeneous clinical and pathological features, necessitating improved biomarkers for accurate diagnosis and patient stratification. In this study, we applied a data-independent acquisition-based proteomics workflow to cerebrospinal fluid (CSF) samples from 138 individuals, including AD patients with high (Aβ+/tau+) or normal (Aβ+/tau-) CSF tau levels, and non-AD controls. Analysis using an Astral mass spectrometer enabled unprecedented proteome depth, identifying 2661 proteins with high data completeness. Comparative proteomic profiling revealed distinct protein signatures for Aβ+/tau+ and Aβ+/tau- subtypes. These findings were validated using an independent internal cohort and further corroborated with publicly available datasets from larger external AD cohorts, demonstrating the robustness and reproducibility of our results. Using machine learning, we identified a panel of 15 protein classifiers that accurately distinguished the two AD subtypes and controls across datasets. Notably, several of these proteins were elevated in the preclinical stage, underscoring their potential utility for early diagnosis and stratification. Together, our results demonstrate the power of data-independent acquisition proteomics on the Astral platform, combined with machine learning, to uncover subtype-specific biomarkers of AD and support the development of personalized diagnostic strategies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12335992PMC
http://dx.doi.org/10.1016/j.mcpro.2025.101025DOI Listing

Publication Analysis

Top Keywords

machine learning
12
cerebrospinal fluid
8
protein classifiers
8
alzheimer's disease
8
proteome profiling
4
profiling cerebrospinal
4
fluid machine
4
learning reveal
4
reveal protein
4
classifiers forms
4

Similar Publications

Background: A clear understanding of minimal clinically important difference (MCID) and substantial clinical benefit (SCB) is essential for effectively implementing patient-reported outcome measurements (PROMs) as a performance measure for total knee arthroplasty (TKA). Since not achieving MCID and SCB may reflect suboptimal surgical benefit, the primary aim of this study was to use machine learning to predict patients who may not achieve the threshold-based outcomes (i.e.

View Article and Find Full Text PDF

Arthroplasty surgery is a common and successful end-stage intervention for advanced osteoarthritis. Yet, postoperative outcomes vary significantly among patients, leading to a plethora of measures and associated measurement approaches to monitor patient outcomes. Traditional approaches rely heavily on patient-reported outcome measures (PROMs), which are widely used, but often lack sensitivity to detect function changes (e.

View Article and Find Full Text PDF

Automatic markerless estimation of infant posture and motion from ordinary videos carries great potential for movement studies "in the wild", facilitating understanding of motor development and massively increasing the chances of early diagnosis of disorders. There has been a rapid development of human pose estimation methods in computer vision, thanks to advances in deep learning and machine learning. However, these methods are trained on datasets that feature adults in different contexts.

View Article and Find Full Text PDF

This study aims to investigate the predictive value of combined phenotypic age and phenotypic age acceleration (PhenoAgeAccel) for benign prostatic hyperplasia (BPH) and develop a machine learning-based risk prediction model to inform precision prevention and clinical management strategies. The study analyzed data from 784 male participants in the US National Health and Nutrition Examination Survey (NHANES, 2001-2008). Phenotypic age was derived from chronological age and nine serum biomarkers.

View Article and Find Full Text PDF

Bariatric surgery is an effective treatment for morbid obesity, but patient outcomes differ greatly because of a variety of phenotypes, comorbidities, and postoperative adherence. In bariatric care, artificial intelligence (AI) and machine learning (ML) are becoming revolutionary tools because traditional predictive models based on BMI and demographic variables are unable to account for these complexities. To put it simply, AI is a branch of computer science that enables machines to perform tasks that typically require human intelligence.

View Article and Find Full Text PDF