A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Generative artificial intelligence acceptance, anxiety, and behavioral intention in the middle east: a TAM-based structural equation modelling approach. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Adopting generative artificial intelligence (GenAI) in education rapidly transforms learning environments, yet nursing students' acceptance and anxiety toward these technologies remain underexplored in Middle Eastern contexts. This study extends the Technology Acceptance Model (TAM) by incorporating constructs such as Facilitating Conditions (FC) and Social Influence (SI). It investigates the moderating role of Anxiety on Behavioral Intention to Use (BIU) generative AI tools.

Methods: A cross-sectional study was conducted among 1,055 undergraduate nursing students across four Middle Eastern countries, including Egypt, Jordan, Saudi Arabia, and Yemen. Data were collected using a structured questionnaire comprising the Generative Artificial Intelligence Acceptance Scale and the Artificial Intelligence Anxiety Scale. Structural equation modeling was employed to evaluate relationships among Performance Expectancy (PE), Effort Expectancy (EE), FC, SI, and BIU, with Anxiety as a moderator. Descriptive statistics, confirmatory factor analysis, and path analysis were performed using SPSS and Python's semopy library.

Results: The model demonstrated strong explanatory power, with 75.09% of the variance in BIU explained by the TAM constructs and Anxiety. Path coefficients revealed significant positive relationships between PE (β = 0.477, p < 0.001), EE (β = 0.293, p < 0.001), FC (β = 0.189, p < 0.001), and SI (β = 0.308, p < 0.001) and BIU. Anxiety had the strongest moderating effect (β = 0.552, p < 0.001), indicating its critical role in shaping behavioral intentions. Gender, year of study, and access to technology emerged as significant demographic variables influencing acceptance and anxiety levels.

Conclusions: This study emphasizes the importance of reducing anxiety and enhancing support systems to foster GenAI acceptance among nursing students. The findings provide actionable insights for designing culturally tailored educational interventions to promote the effective integration of AI in nursing education.

Clinical Trial Number: Not applicable.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12211728PMC
http://dx.doi.org/10.1186/s12912-025-03436-8DOI Listing

Publication Analysis

Top Keywords

artificial intelligence
16
generative artificial
12
intelligence acceptance
8
acceptance anxiety
8
anxiety behavioral
8
behavioral intention
8
structural equation
8
middle eastern
8
anxiety
6
generative
4

Similar Publications