Deep learning for gender estimation using hand radiographs: a comparative evaluation of CNN models.

BMC Med Imaging

Department of Rehabilitation Sciences, College of Health and Rehabilitation Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia.

Published: July 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Accurate gender estimation plays a crucial role in forensic identification, especially in mass disasters or cases involving fragmented or decomposed remains where traditional skeletal landmarks are unavailable. This study aimed to develop a deep learning-based model for gender classification using hand radiographs, offering a rapid and objective alternative to conventional methods.

Methods: We analyzed 470 left-hand X-ray images from adults aged 18 to 65 years using four convolutional neural network (CNN) architectures: ResNet-18, ResNet-50, InceptionV3, and EfficientNet-B0. Following image preprocessing and data augmentation, models were trained and validated using standard classification metrics: accuracy, precision, recall, and F1 score. Data augmentation included random rotation, horizontal flipping, and brightness adjustments to enhance model generalization.

Results: Among the tested models, ResNet-50 achieved the highest classification accuracy (93.2%) with precision of 92.4%, recall of 93.3%, and F1 score of 92.5%. While other models demonstrated acceptable performance, ResNet-50 consistently outperformed them across all metrics. These findings suggest CNNs can reliably extract sexually dimorphic features from hand radiographs.

Conclusions: Deep learning approaches, particularly ResNet-50, provide a robust, scalable, and efficient solution for gender prediction from hand X-ray images. This method may serve as a valuable tool in forensic scenarios where speed and reliability are critical. Future research should validate these findings across diverse populations and incorporate explainable AI techniques to enhance interpretability.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12219916PMC
http://dx.doi.org/10.1186/s12880-025-01809-8DOI Listing

Publication Analysis

Top Keywords

deep learning
8
gender estimation
8
hand radiographs
8
x-ray images
8
data augmentation
8
gender
4
learning gender
4
hand
4
estimation hand
4
radiographs comparative
4

Similar Publications

Oral bioavailability property prediction based on task similarity transfer learning.

Mol Divers

September 2025

Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, Nanjing, 211198, China.

Drug absorption significantly influences pharmacokinetics. Accurately predicting human oral bioavailability (HOB) is essential for optimizing drug candidates and improving clinical success rates. The traditional method based on experiment is a common way to obtain HOB, but the experimental method is time-consuming and costly.

View Article and Find Full Text PDF

This study explores how differences in colors presented separately to each eye (binocular color differences) can be identified through EEG signals, a method of recording electrical activity from the brain. Four distinct levels of green-red color differences, defined in the CIELAB color space with constant luminance and chroma, are investigated in this study. Analysis of Event-Related Potentials (ERPs) revealed a significant decrease in the amplitude of the P300 component as binocular color differences increased, suggesting a measurable brain response to these differences.

View Article and Find Full Text PDF

Clinical evaluation of motion robust reconstruction using deep learning in lung CT.

Phys Eng Sci Med

September 2025

Department of Radiology, Otaru General Hospital, Otaru, Hokkaido, Japan.

In lung CT imaging, motion artifacts caused by cardiac motion and respiration are common. Recently, CLEAR Motion, a deep learning-based reconstruction method that applies motion correction technology, has been developed. This study aims to quantitatively evaluate the clinical usefulness of CLEAR Motion.

View Article and Find Full Text PDF

Predicting complex time series with deep echo state networks.

Chaos

September 2025

School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.

Although many real-world time series are complex, developing methods that can learn from their behavior effectively enough to enable reliable forecasting remains challenging. Recently, several machine-learning approaches have shown promise in addressing this problem. In particular, the echo state network (ESN) architecture, a type of recurrent neural network where neurons are randomly connected and only the read-out layer is trained, has been proposed as suitable for many-step-ahead forecasting tasks.

View Article and Find Full Text PDF

Purpose To assess the effectiveness of an explainable deep learning (DL) model, developed using multiparametric MRI (mpMRI) features, in improving diagnostic accuracy and efficiency of radiologists for classification of focal liver lesions (FLLs). Materials and Methods FLLs ≥ 1 cm in diameter at mpMRI were included in the study. nn-Unet and Liver Imaging Feature Transformer (LIFT) models were developed using retrospective data from one hospital (January 2018-August 2023).

View Article and Find Full Text PDF