A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Addressing artifactual bias in large, automated MRI analyses of brain development. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Large, population-based magnetic resonance imaging (MRI) studies of adolescents promise transformational insights into neurodevelopment and mental illness risk. However, youth MRI studies are especially susceptible to motion and other artifacts that introduce non-random noise. After visual quality control of 11,263 T1 MRI scans obtained at age 9-10 years through the Adolescent Brain Cognitive Development study, we uncovered bias in measurements of cortical thickness and surface area in 55.1% of the samples with suboptimal image quality. These biases impacted analyses relating structural MRI and clinical measures, resulting in both false-positive and false-negative associations. Surface hole number, an automated index of topological complexity, reproducibly identified lower-quality scans with good specificity, and its inclusion as a covariate partially mitigated quality-related bias. Closer examination of high-quality scans revealed additional topological errors introduced during image preprocessing. Correction with manual edits reproducibly altered thickness measurements and strengthened age-thickness associations. We demonstrate here that inadequate quality control undermines advantages of large sample size to detect meaningful associations. These biases can be mitigated through additional automated and manual interventions.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41593-025-01990-7DOI Listing

Publication Analysis

Top Keywords

mri studies
8
quality control
8
mri
5
addressing artifactual
4
artifactual bias
4
bias large
4
large automated
4
automated mri
4
mri analyses
4
analyses brain
4

Similar Publications