Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Efficient control of magnetization in ferromagnets is crucial for high-performance spintronic devices. Magnons offer a promising route to achieve this objective with reduced Joule heating and minimized power consumption. While most research focuses on optimizing magnon transport with minimal dissipation, we present an unconventional approach that exploits magnon dissipation for magnetization control, rather than mitigating it. By combining a single ferromagnetic metal with an antiferromagnetic insulator that breaks symmetry in spin transport across the layers while preserving the symmetry in charge transport, we realize considerable spin-orbit torques comparable to those found in non-magnetic metals, enough for magnetization switching. Our systematic experiments and comprehensive analysis confirm that our findings are a result of magnonic spin dissipation, rather than external spin sources. These results provide insights into the experimentally challenging field of intrinsic spin currents in ferromagnets, and open up possibilities for developing energy-efficient devices based on magnon dissipation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12216645 | PMC |
http://dx.doi.org/10.1038/s41467-025-61073-w | DOI Listing |