98%
921
2 minutes
20
Deep learning methods have demonstrated great performance for RNA secondary structure prediction. However, generalizability is a common unsolved issue on unseen out-of-distribution RNA families, which hinders further improvement of the accuracy and robustness of deep learning methods. Here we construct a base pair motif library that enumerates the complete space of the locally adjacent three-neighbor base pair and records the thermodynamic energy of corresponding base pair motifs through de novo modeling of tertiary structures, and we further develop a deep learning approach for RNA secondary structure prediction, named BPfold, which learns relationship between RNA sequence and the energy map of base pair motif. Experiments on sequence-wise and family-wise datasets have demonstrated the great superiority of BPfold compared to other state-of-the-art approaches in accuracy and generalizability. We hope this work contributes to integrating physical priors and deep learning methods for the further discovery of RNA structures and functionalities.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12216785 | PMC |
http://dx.doi.org/10.1038/s41467-025-60048-1 | DOI Listing |
ACS Electrochem
September 2025
School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK.
The study of electrochemical oxidations has wide-ranging implications, from the development of new electrocatalysts for fuel cells for energy conversion, to the synthesis of fine chemicals. 2,2,6,6-Tetramethylpiperidine-1-oxyl (TEMPO) has been used for decades as a sustainable, metal-free mediator for chemical oxidations and is now being used for electrochemical oxidations. We describe here a novel approach to TEMPO-mediated electrooxidations, in which the chemical input and waste generated during electrooxidations of alcohols are minimized by using a multifunctional room temperature ionic liquid (RTIL) to facilitate flow electrosynthesis.
View Article and Find Full Text PDFCell Physiol Biochem
September 2025
Zoology Department, Faculty of Science, Ain Shams University, Cairo, Egypt.
Background/aims: Drug addiction is a neuropsychiatric disorder characterised by compulsive drug-seeking behaviour notwithstanding adverse consequences. This work seeks to address a deficiency in the literature by comparing drug-addicted and non-addicted individuals within an Iraqi population through the analysis of a 1000-base pair variable number of tandem repeats (VNTRs) polymorphism of the dopamine receptor gene DRD4. The association of this novel polymorphism with drug addiction has not yet been examined.
View Article and Find Full Text PDFBiophys J
September 2025
Biophysical and Biomedical Measurement Group, Microsystems and Nanotechnology Division, Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD, USA. Electronic address:
Macromolecular structure is central to biology. Yet, not all biomolecules have a well-defined fold. Intrinsically disordered regions are ubiquitous, conveying a versatility to function even in otherwise folded structures.
View Article and Find Full Text PDFAm J Trop Med Hyg
September 2025
Rickettsial Zoonoses Branch, Centers for Disease Control and Prevention, Atlanta, Georgia.
Haemaphysalis leporispalustris (the rabbit tick) is one of the most broadly distributed hard tick species in the Americas. In 2018, investigators amplified DNA from a spotted fever group Rickettsia (SFGR) species found in host-seeking larvae and nymphs of H. leporispalustris collected in northern California and proposed the name Candidatus "Rickettsia lanei" using results obtained via multilocus sequence typing.
View Article and Find Full Text PDFLife Sci
September 2025
Department of Pharmacology, Faculty of Medicine, University of Granada, 18016, Granada, Spain; Institute of Neuroscience, Biomedical Research Center, University of Granada, Armilla, 18100, Granada, Spain; Biosanitary Research Institute ibs.GRANADA, 18012, Granada, Spain. Electronic address: fnieto@u
The sigma-1 receptor (σ1R) is a chaperone involved in multiple physiological and pathological processes, including pain modulation, neuroprotection, and neurodegenerative diseases. Despite its functional significance, its precise roles remain unclear due to the lack of suitable models for detailed mechanistic studies. In this work, we describe the generation and phenotypic characterization of a novel σ1R knockout (σ1R KO) rat model.
View Article and Find Full Text PDF