98%
921
2 minutes
20
Epigenetic mechanisms influence early developmental events, shaping gene expression in exciting ways that go beyond the DNA blueprint. The state of chromatin is governed by an interplay between various histone modifications, variants, nucleosome remodeling complexes, and other chromatin modifiers that work in sync to prime the chromatin for specific biological outcomes. In this chapter, we explore neural crest cells (NCCs), a critical progenitor population that retains the extensive developmental potential of their blastula origins. The formation and differentiation of NCCs into diverse cell types are influenced by the regulation of their acetylation state through various epigenetic factors. This chapter delves into the intricate interplay between histone acetylases (HATs) and deacetylases (HDACs), highlighting how these enzymes modify chromatin to create a permissive environment for the induction of NCCs and steer their fate toward the melanocytic lineage. The shift in acetylation profiles during the transition from melanocytes to melanoma suggests that the transcriptional machinery may override normal regulatory mechanisms, promoting a neural crest-like state in melanoma development. Epigenetic regulation, particularly through histone acetylation, plays a pivotal role in neural crest cell development and melanoma initiation offering potential therapeutic targets.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-3-031-91459-1_7 | DOI Listing |
PLoS One
September 2025
Children's Health Research Institute, Victoria Research Labs, London, Ontario, Canada.
Loss of actin cytoskeleton control can hinder integral developmental and physiological processes and can be the basis for a subset of developmental defects. SHROOM3 is an actin binding protein, best characterized as being essential for neural tube closure in vertebrates. Shroom3 expression has also been identified in the developing heart, with some associated congenital heart defects.
View Article and Find Full Text PDFDev Dyn
September 2025
Department of Internal Medicine, Division of Cardiovascular Medicine, Francois M. Abboud Cardiovascular Research Center, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa, USA.
Background: Gene transcription is crucial for embryo and postnatal development and is regulated by the Mediator complex. Mediator is comprised of four submodules, including the kinase submodule (CKM). The CKM consists of MED13, MED12, CDK8, and CCNC.
View Article and Find Full Text PDFReprod Toxicol
September 2025
Department of Biochemistry and Molecular Biology, Brain Korea 21 Project, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea. Electronic address:
Xenopus embryo serves as an ideal model for teratogenesis assays to observe the effects of any compounds on the cellular processes crucial for early development and adult tissue homeostasis. In our screening of a chemical library with frog embryo, caffeic acid phenethyl ester (CAPE) was found to upregulate the FGF/MAPK pathway, disrupting germ layer formation in early development. Exposure to CAPE interfered with the formation of anterior-posterior body axis and of ectodermal derivatives such as eyes, dorsal fin and pigment cells.
View Article and Find Full Text PDFPigment Cell Melanoma Res
September 2025
Department of Biomedicine, Aarhus University, Aarhus, Denmark.
Low density lipoprotein receptor-related protein 2 (LRP2) is a 600 kilodalton multi-ligand endocytic membrane receptor expressed in several cell types during fetal development, including neuroepithelial cells, and in select absorptive epithelial cells in the adult. In epithelial cancers, LRP2 expression is associated with a differentiated tumor cell state and better prognosis. In previous work, we found that while LRP2 is not expressed in benign naevi, it is frequently acquired in melanoma.
View Article and Find Full Text PDF