Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Cell sheet engineering provides a scaffold-free strategy for fabricating cohesive tissue constructs, but challenges remain in maintaining structural integrity and mimicking complex tissue architectures. This study demonstrated perfluorodecalin-based liquid-liquid interfaces, known for their inertness and stability, as a simple, and efficient platform for fabricating cell sheets. Using single cells, spheroids, and their combination, we evaluated methods to enhance sheet formation. Single cells formed cohesive sheets at high densities (4 × 10 cells/well) but exhibited limited long-term stability due to nutrient constraints. Spheroids formed robust sheets at lower densities (2 × 10 cells/well), whereas higher densities impaired fusion. The mixed approach combined the advantages of both, improving uniformity, mechanical stability, and spheroid fusion, while mimicking muscle-like structures with vascular networks. Additionally, the cell sheets retained adipogenic and chondrogenic differentiation potential, highlighting their functional viability. These findings establish liquid interfaces as a practical and versatile platform for tissue engineering, regenerative medicine, and in vitro modeling.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12206988PMC
http://dx.doi.org/10.1177/20417314251350316DOI Listing

Publication Analysis

Top Keywords

single cells
12
cell sheet
8
sheet engineering
8
cells spheroids
8
cell sheets
8
enhanced cell
4
engineering combination
4
combination single
4
spheroids liquid
4
liquid interface
4

Similar Publications

Purpose: NOTCH3 is increasingly implicated for its oncogenic role in many malignancies, including meningiomas. While prior work has linked NOTCH3 expression to higher-grade meningiomas and treatment resistance, the metabolic phenotype of NOTCH3 activation remains unexplored in meningioma.

Methods: We performed single-cell RNA sequencing on NOTCH3 + human meningioma cell lines.

View Article and Find Full Text PDF

Plastoglobuli (PG) are plant lipoprotein compartments, present in plastid organelles. They are involved in the formation and/or storage of lipophilic metabolites. FIBRILLINs (FBNs) are one of the main PG-associated proteins and are particularly abundant in carotenoid-enriched chromoplasts found in ripe fruits and flowers.

View Article and Find Full Text PDF

Peripheral sensory neurons regenerate their axons after injury to regain function, but this ability declines with age. The mechanisms behind this decline are not fully understood. While excessive production of endothelin 1 (ET-1), a potent vasoconstrictor, is linked to many diseases that increase with age, the role of ET-1 and its receptors in axon regeneration is unknown.

View Article and Find Full Text PDF

Mitoribosome-Targeting Antibiotics Suppress Osteoclastogenesis and Periodontitis-Induced Bone Loss by Blocking Mitochondrial Protein Synthesis.

FASEB J

September 2025

Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials

The onset and progression of periodontitis are closely related to metabolic reprogramming in the periodontal microenvironment, with osteoclasts playing a critical role in tissue destruction. Single-cell RNA sequencing (scRNA-seq) of periodontal tissues from healthy individuals and patients with severe chronic periodontitis revealed a significant increase in the expression of mitochondrial-related genes during osteoclast differentiation, suggesting the critical role of mitochondrial function in this process. This study investigates the potential of the novel mitoribosome-targeting antibiotic radezolid in inhibiting osteoclast differentiation.

View Article and Find Full Text PDF

Biofilm lifestyle across different lineages of ammonia-oxidizing archaea.

ISME J

September 2025

Department of Functional and Evolutionary Ecology, Archaea Biology and Ecogenomics Unit, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria.

Although ammonia-oxidizing archaea (AOA) are globally distributed in nature, growth in biofilms has been relatively little explored. Here we investigated six representatives of three different terrestrial and marine clades of AOA in a longitudinal and quantitative study for their ability to form biofilm, and studied gene expression patterns of three representatives. Although all strains grew on a solid surface, soil strains of the genera Nitrosocosmicus and Nitrososphaera exhibited the highest capacity for biofilm formation.

View Article and Find Full Text PDF