Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Unlabelled: The rising incidence of methicillin-resistant (MRSA) poses a significant threat to global public health, highlighting the urgent need for novel therapies and treatments in clinical settings. Caseinolytic protease P (ClpP) serves as a key component of bacterial degradation systems, playing a crucial role in maintaining cellular homeostasis and contributing to pathogenicity. Targeting ClpP function inhibition has demonstrated potential in combating antibiotic resistance and offers a promising therapeutic strategy for treating infections. In this study, coniferaldehyde (CA) was identified as a ClpP inhibitor through ClpP peptidase inhibition assay. CA reduced the hemolysis activity, protease hydrolysis and bacterial invasion ability via regulating the transcription of main virulence factors. Furthermore, CA treatment led to a decreased resistance of to adverse stimuli, including heat, acidic pH, high osmotic environment, hydrogen peroxide and NaClO stress assays. Notably, CA enhanced the efficacy of the bactericidal antibiotic tigecycline against growing in time-killing assays. Molecular simulations and mutagenesis analyses revealed that the amino acids M31 and G33 were critical for the interaction between CA and ClpP. Importantly, CA exhibited excellent protective efficacy against pneumonia in murine infection models. Our findings confirm that CA is an effective ClpP inhibitor with potential as a therapeutic agent for infections.
Graphical Abstract: [Image: see text]
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12207802 | PMC |
http://dx.doi.org/10.1186/s10020-025-01306-2 | DOI Listing |