Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Cas9 is a programmable nuclease that has furnished transformative technologies, including base editors and transcription modulators (e.g., CRISPRi/a), but several applications of these technologies, including therapeutics, mandatorily require precision control of their half-life. For example, such control can help avert any potential immunological and adverse events in clinical trials. Current genome editing technologies to control the half-life of Cas9 are slow, have lower activity, involve fusion of large response elements (>230 amino acids), utilize expensive controllers with poor pharmacological attributes, and cannot be implemented on several CRISPR-based technologies. We report a general platform for half-life control using the molecular glue, pomalidomide, that binds to a ubiquitin ligase complex and a response-element bearing CRISPR-based technology, thereby causing the latter's rapid ubiquitination and degradation. Using pomalidomide, we were able to control the half-life of large CRISPR-based technologies (e.g., base editors and CRISPRi) and small anti-CRISPRs that inhibit such technologies, allowing us to build the first examples of on-switch for base editors. The ability to switch on, fine-tune, and switch-off CRISPR-based technologies with pomalidomide allowed complete control over their activity, specificity, and genome editing outcome. Importantly, the miniature size of the response element and favorable pharmacological attributes of the drug pomalidomide allowed control of activity of base editor using AAV as the delivery vehicle. These studies provide methods and reagents to precisely control the dosage and half-life of CRISPR-based technologies, propelling their therapeutic development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12380249PMC
http://dx.doi.org/10.1021/jacs.5c06230DOI Listing

Publication Analysis

Top Keywords

crispr-based technologies
20
control half-life
16
base editors
12
control
9
technologies
9
molecular glue
8
half-life crispr-based
8
technologies including
8
genome editing
8
pharmacological attributes
8

Similar Publications

Rolling circle amplification for next-generation molecular diagnostics, genome analysis, and spatial transcriptome profiling.

Nanoscale

September 2025

Department of Bioengineering & Nano-Bioengineering, Research Center for Bio Materials and Process Development, Incheon National University, Incheon 22012, Republic of Korea.

Rolling circle amplification (RCA) has emerged as a highly versatile and robust isothermal amplification technology, offering exceptional sensitivity, specificity, and scalability for next-generation molecular diagnostics and multi-omics research. Its ability to generate long, repetitive DNA sequences with high fidelity has made it a pivotal tool in disease diagnostics, genomic analysis, and spatial transcriptome profiling. Recent advancements have expanded RCA into various formats, including solution-phase, solid-phase, hydrogel-based, and digital RCA, enhancing its analytical performance and adaptability across diverse biological applications.

View Article and Find Full Text PDF

Residual disease in NPM1-mutated acute myeloid leukemia.

Clin Chim Acta

September 2025

Department of Hematology and Blood Banking, School of Allied Medical Sciences, Iran University of Medical, Tehran, Iran. Electronic address:

Acute myeloid leukemia (AML) represents a genetically heterogeneous malignancy, with mutations in the nucleophosmin-1 (NPM1) gene identified as the most prevalent and clinically significant molecular biomarkers. These mutations play a crucial pivotal role in the realms of diagnosis, prognosis, and therapeutic decision-making. Although an ideal measurable residual disease (MRD) test has yet to be developed, there is increasing acknowledgment of the significance of advanced molecular methodologies for monitoring MRD in NPM1-mutated (NPM1) AML.

View Article and Find Full Text PDF

Avian influenza viruses (AIVs) are zoonotic pathogens that pose an increasing global threat due to their potential for significant economic losses in agriculture, spillover into humans, and the risk of a pandemic should human-to-human transmission occur. These concerns underscore the need for rapid, sensitive and specific tools to detect and differentiate circulating AIV subtypes and clades. Current AIV diagnostic methods rely on specialized equipment and trained personnel, limiting their use in the field and in low-resource settings.

View Article and Find Full Text PDF

Dynamic chromatin 3-dimensional (3D) conformation is a key mechanism regulating gene expression and cellular function during development and disease. Elucidating the structure, functional dynamics, and spatiotemporal organization of the 3D genome requires integrating multiple experimental approaches, including chromatin conformation capture techniques, precise genome manipulation tools, and advanced imaging technologies. Notably, CRISPR/Cas systems have emerged as a revolutionary genome-editing platform, offering unprecedented opportunities for manipulating 3D genome organization and investigating disease mechanisms.

View Article and Find Full Text PDF

Long Non-coding RNA Based Therapy for Cardiovascular Disease.

J Cardiovasc Transl Res

September 2025

Institute for Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University, Frankfurt Am Main, Germany.

Cardiovascular diseases (CVDs) remain a leading cause of morbidity and mortality worldwide, necessitating innovative therapeutic strategies. Long non-coding RNAs (lncRNAs) have emerged as regulators of gene expression, influencing various cellular processes involved in cardiovascular health and disease. This review explores the functional roles of lncRNAs in CVD pathogenesis, highlighting their involvement in processes such as hypertrophy, fibrosis, inflammation, and vascular remodeling.

View Article and Find Full Text PDF